1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typerefs
import (
"fmt"
"go/ast"
"go/token"
"sort"
"strings"
"golang.org/x/tools/gopls/internal/cache/metadata"
"golang.org/x/tools/gopls/internal/cache/parsego"
"golang.org/x/tools/gopls/internal/util/astutil"
"golang.org/x/tools/gopls/internal/util/frob"
)
// Encode analyzes the Go syntax trees of a package, constructs a
// reference graph, and uses it to compute, for each exported
// declaration, the set of exported symbols of directly imported
// packages that it references, perhaps indirectly.
//
// It returns a serializable index of this information.
// Use Decode to expand the result.
func Encode(files []*parsego.File, imports map[metadata.ImportPath]*metadata.Package) []byte {
return index(files, imports)
}
// Decode decodes a serializable index of symbol
// reachability produced by Encode.
//
// Because many declarations reference the exact same set of symbols,
// the results are grouped into equivalence classes.
// Classes are sorted by Decls[0], ascending.
// The class with empty reachability is omitted.
//
// See the package documentation for more details as to what a
// reference does (and does not) represent.
func Decode(pkgIndex *PackageIndex, data []byte) []Class {
return decode(pkgIndex, data)
}
// A Class is a reachability equivalence class.
//
// It attests that each exported package-level declaration in Decls
// references (perhaps indirectly) one of the external (imported)
// symbols in Refs.
//
// Because many Decls reach the same Refs,
// it is more efficient to group them into classes.
type Class struct {
Decls []string // sorted set of names of exported decls with same reachability
Refs []Symbol // set of external symbols, in ascending (PackageID, Name) order
}
// A Symbol represents an external (imported) symbol
// referenced by the analyzed package.
type Symbol struct {
Package IndexID // w.r.t. PackageIndex passed to decoder
Name string
}
// An IndexID is a small integer that uniquely identifies a package within a
// given PackageIndex.
type IndexID int
// -- internals --
// A symbolSet is a set of symbols used internally during index construction.
//
// TODO(adonovan): opt: evaluate unifying Symbol and symbol.
// (Encode would have to create a private PackageIndex.)
type symbolSet map[symbol]bool
// A symbol is the internal representation of an external
// (imported) symbol referenced by the analyzed package.
type symbol struct {
pkg metadata.PackageID
name string
}
// declNode holds information about a package-level declaration
// (or more than one with the same name, in ill-typed code).
//
// It is a node in the symbol reference graph, whose outgoing edges
// are of two kinds: intRefs and extRefs.
type declNode struct {
name string
rep *declNode // canonical representative of this SCC (initially self)
// outgoing graph edges
intRefs map[*declNode]bool // to symbols in this package
extRefs symbolSet // to imported symbols
extRefsClass int // extRefs equivalence class number (-1 until set at end)
// Tarjan's SCC algorithm
index, lowlink int32 // Tarjan numbering
scc int32 // -ve => on stack; 0 => unvisited; +ve => node is root of a found SCC
}
// state holds the working state of the Refs algorithm for a single package.
//
// The number of distinct symbols referenced by a single package
// (measured across all of kubernetes), was found to be:
// - max = 1750.
// - Several packages reference > 100 symbols.
// - p95 = 32, p90 = 22, p50 = 8.
type state struct {
// numbering of unique symbol sets
class []symbolSet // unique symbol sets
classIndex map[string]int // index of above (using SymbolSet.hash as key)
// Tarjan's SCC algorithm
index int32
stack []*declNode
}
// getClassIndex returns the small integer (an index into
// state.class) that identifies the given set.
func (st *state) getClassIndex(set symbolSet) int {
key := classKey(set)
i, ok := st.classIndex[key]
if !ok {
i = len(st.class)
st.classIndex[key] = i
st.class = append(st.class, set)
}
return i
}
// appendSorted appends the symbols to syms, sorts by ascending
// (PackageID, name), and returns the result.
// The argument must be an empty slice, ideally with capacity len(set).
func (set symbolSet) appendSorted(syms []symbol) []symbol {
for sym := range set {
syms = append(syms, sym)
}
sort.Slice(syms, func(i, j int) bool {
x, y := syms[i], syms[j]
if x.pkg != y.pkg {
return x.pkg < y.pkg
}
return x.name < y.name
})
return syms
}
// classKey returns a key such that equal keys imply equal sets.
// (e.g. a sorted string representation, or a cryptographic hash of same).
func classKey(set symbolSet) string {
// Sort symbols into a stable order.
// TODO(adonovan): opt: a cheap crypto hash (e.g. BLAKE2b) might
// make a cheaper map key than a large string.
// Try using a hasher instead of a builder.
var s strings.Builder
for _, sym := range set.appendSorted(make([]symbol, 0, len(set))) {
fmt.Fprintf(&s, "%s:%s;", sym.pkg, sym.name)
}
return s.String()
}
// index builds the reference graph and encodes the index.
func index(pgfs []*parsego.File, imports map[metadata.ImportPath]*metadata.Package) []byte {
// First pass: gather package-level names and create a declNode for each.
//
// In ill-typed code, there may be multiple declarations of the
// same name; a single declInfo node will represent them all.
decls := make(map[string]*declNode)
addDecl := func(id *ast.Ident) {
if name := id.Name; name != "_" && decls[name] == nil {
node := &declNode{name: name, extRefsClass: -1}
node.rep = node
decls[name] = node
}
}
for _, pgf := range pgfs {
for _, d := range pgf.File.Decls {
switch d := d.(type) {
case *ast.GenDecl:
switch d.Tok {
case token.TYPE:
for _, spec := range d.Specs {
addDecl(spec.(*ast.TypeSpec).Name)
}
case token.VAR, token.CONST:
for _, spec := range d.Specs {
for _, ident := range spec.(*ast.ValueSpec).Names {
addDecl(ident)
}
}
}
case *ast.FuncDecl:
// non-method functions
if d.Recv.NumFields() == 0 {
addDecl(d.Name)
}
}
}
}
// Second pass: process files to collect referring identifiers.
st := &state{classIndex: make(map[string]int)}
for _, pgf := range pgfs {
visitFile(pgf.File, imports, decls)
}
// Find the strong components of the declNode graph
// using Tarjan's algorithm, and coalesce each component.
st.index = 1
for _, decl := range decls {
if decl.index == 0 { // unvisited
st.visit(decl)
}
}
// TODO(adonovan): opt: consider compressing the serialized
// representation by recording not the classes but the DAG of
// non-trivial union operations (the "pointer equivalence"
// optimization of Hardekopf & Lin). Unlike that algorithm,
// which piggybacks on SCC coalescing, in our case it would
// be better to make a forward traversal from the exported
// decls, since it avoids visiting unreachable nodes, and
// results in a dense (not sparse) numbering of the sets.
// Tabulate the unique reachability sets of
// each exported package member.
classNames := make(map[int][]string) // set of decls (names) for a given reachability set
for name, decl := range decls {
if !ast.IsExported(name) {
continue
}
decl = decl.find()
// Skip decls with empty reachability.
if len(decl.extRefs) == 0 {
continue
}
// Canonicalize the set (and memoize).
class := decl.extRefsClass
if class < 0 {
class = st.getClassIndex(decl.extRefs)
decl.extRefsClass = class
}
classNames[class] = append(classNames[class], name)
}
return encode(classNames, st.class)
}
// visitFile inspects the file syntax for referring identifiers, and
// populates the internal and external references of decls.
func visitFile(file *ast.File, imports map[metadata.ImportPath]*metadata.Package, decls map[string]*declNode) {
// Import information for this file. Multiple packages
// may be referenced by a given name in the presence
// of type errors (or multiple dot imports, which are
// keyed by ".").
fileImports := make(map[string][]metadata.PackageID)
// importEdge records a reference from decl to an imported symbol
// (pkgname.name). The package name may be ".".
importEdge := func(decl *declNode, pkgname, name string) {
if token.IsExported(name) {
for _, depID := range fileImports[pkgname] {
if decl.extRefs == nil {
decl.extRefs = make(symbolSet)
}
decl.extRefs[symbol{depID, name}] = true
}
}
}
// visit finds refs within node and builds edges from fromId's decl.
// References to the type parameters are ignored.
visit := func(fromId *ast.Ident, node ast.Node, tparams map[string]bool) {
if fromId.Name == "_" {
return
}
from := decls[fromId.Name]
// When visiting a method, there may not be a valid type declaration for
// the receiver. In this case there is no way to refer to the method, so
// we need not record edges.
if from == nil {
return
}
// Visit each reference to name or name.sel.
visitDeclOrSpec(node, func(name, sel string) {
// Ignore references to type parameters.
if tparams[name] {
return
}
// If name is declared in the package scope,
// record an edge whether or not sel is empty.
// A field or method selector may affect the
// type of the current decl via initializers:
//
// package p
// var x = y.F
// var y = struct{ F int }{}
if to, ok := decls[name]; ok {
if from.intRefs == nil {
from.intRefs = make(map[*declNode]bool)
}
from.intRefs[to] = true
} else {
// Only record an edge to dot-imported packages
// if there was no edge to a local name.
// This assumes that there are no duplicate declarations.
// We conservatively, assume that this name comes from
// every dot-imported package.
importEdge(from, ".", name)
}
// Record an edge to an import if it matches the name, even if that
// name collides with a package level name. Unlike the case of dotted
// imports, we know the package is invalid here, and choose to fail
// conservatively.
if sel != "" {
importEdge(from, name, sel)
}
})
}
// Visit the declarations and gather reference edges.
// Import declarations appear before all others.
for _, d := range file.Decls {
switch d := d.(type) {
case *ast.GenDecl:
switch d.Tok {
case token.IMPORT:
// Record local import names for this file.
for _, spec := range d.Specs {
spec := spec.(*ast.ImportSpec)
path := metadata.UnquoteImportPath(spec)
if path == "" {
continue
}
dep := imports[path]
if dep == nil {
// Note here that we don't try to "guess"
// the name of an import based on e.g.
// its importPath. Doing so would only
// result in edges that don't go anywhere.
continue
}
name := string(dep.Name)
if spec.Name != nil {
if spec.Name.Name == "_" {
continue
}
name = spec.Name.Name // possibly "."
}
fileImports[name] = append(fileImports[name], dep.ID)
}
case token.TYPE:
for _, spec := range d.Specs {
spec := spec.(*ast.TypeSpec)
tparams := tparamsMap(spec.TypeParams)
visit(spec.Name, spec, tparams)
}
case token.VAR, token.CONST:
for _, spec := range d.Specs {
spec := spec.(*ast.ValueSpec)
for _, name := range spec.Names {
visit(name, spec, nil)
}
}
}
case *ast.FuncDecl:
// This check for NumFields() > 0 is consistent with go/types,
// which reports an error but treats the declaration like a
// normal function when Recv is non-nil but empty
// (as in func () f()).
if d.Recv.NumFields() > 0 {
// Method. Associate it with the receiver.
_, id, typeParams := astutil.UnpackRecv(d.Recv.List[0].Type)
if id != nil {
var tparams map[string]bool
if len(typeParams) > 0 {
tparams = make(map[string]bool)
for _, tparam := range typeParams {
if tparam.Name != "_" {
tparams[tparam.Name] = true
}
}
}
visit(id, d, tparams)
}
} else {
// Non-method.
tparams := tparamsMap(d.Type.TypeParams)
visit(d.Name, d, tparams)
}
}
}
}
// tparamsMap returns a set recording each name declared by the provided field
// list. It so happens that we only care about names declared by type parameter
// lists.
func tparamsMap(tparams *ast.FieldList) map[string]bool {
if tparams == nil || len(tparams.List) == 0 {
return nil
}
m := make(map[string]bool)
for _, f := range tparams.List {
for _, name := range f.Names {
if name.Name != "_" {
m[name.Name] = true
}
}
}
return m
}
// A refVisitor visits referring identifiers and dotted identifiers.
//
// For a referring identifier I, name="I" and sel="". For a dotted identifier
// q.I, name="q" and sel="I".
type refVisitor = func(name, sel string)
// visitDeclOrSpec visits referring idents or dotted idents that may affect
// the type of the declaration at the given node, which must be an ast.Decl or
// ast.Spec.
func visitDeclOrSpec(node ast.Node, f refVisitor) {
// Declarations
switch n := node.(type) {
// ImportSpecs should not appear here, and will panic in the default case.
case *ast.ValueSpec:
// Skip Doc, Names, Comments, which do not affect the decl type.
// Initializers only affect the type of a value spec if the type is unset.
if n.Type != nil {
visitExpr(n.Type, f)
} else { // only need to walk expr list if type is nil
visitExprList(n.Values, f)
}
case *ast.TypeSpec:
// Skip Doc, Name, and Comment, which do not affect the decl type.
if tparams := n.TypeParams; tparams != nil {
visitFieldList(tparams, f)
}
visitExpr(n.Type, f)
case *ast.BadDecl:
// nothing to do
// We should not reach here with a GenDecl, so panic below in the default case.
case *ast.FuncDecl:
// Skip Doc, Name, and Body, which do not affect the type.
// Recv is handled by Refs: methods are associated with their type.
visitExpr(n.Type, f)
default:
panic(fmt.Sprintf("unexpected node type %T", node))
}
}
// visitExpr visits referring idents and dotted idents that may affect the
// type of expr.
//
// visitExpr can't reliably distinguish a dotted ident pkg.X from a
// selection expr.f or T.method.
func visitExpr(expr ast.Expr, f refVisitor) {
switch n := expr.(type) {
// These four cases account for about two thirds of all nodes,
// so we place them first to shorten the common control paths.
// (See go.dev/cl/480915.)
case *ast.Ident:
f(n.Name, "")
case *ast.BasicLit:
// nothing to do
case *ast.SelectorExpr:
if ident, ok := n.X.(*ast.Ident); ok {
f(ident.Name, n.Sel.Name)
} else {
visitExpr(n.X, f)
// Skip n.Sel as we don't care about which field or method is selected,
// as we'll have recorded an edge to all declarations relevant to the
// receiver type via visiting n.X above.
}
case *ast.CallExpr:
visitExpr(n.Fun, f)
visitExprList(n.Args, f) // args affect types for unsafe.Sizeof or builtins or generics
// Expressions
case *ast.Ellipsis:
if n.Elt != nil {
visitExpr(n.Elt, f)
}
case *ast.FuncLit:
visitExpr(n.Type, f)
// Skip Body, which does not affect the type.
case *ast.CompositeLit:
if n.Type != nil {
visitExpr(n.Type, f)
}
// Skip Elts, which do not affect the type.
case *ast.ParenExpr:
visitExpr(n.X, f)
case *ast.IndexExpr:
visitExpr(n.X, f)
visitExpr(n.Index, f) // may affect type for instantiations
case *ast.IndexListExpr:
visitExpr(n.X, f)
for _, index := range n.Indices {
visitExpr(index, f) // may affect the type for instantiations
}
case *ast.SliceExpr:
visitExpr(n.X, f)
// skip Low, High, and Max, which do not affect type.
case *ast.TypeAssertExpr:
// Skip X, as it doesn't actually affect the resulting type of the type
// assertion.
if n.Type != nil {
visitExpr(n.Type, f)
}
case *ast.StarExpr:
visitExpr(n.X, f)
case *ast.UnaryExpr:
visitExpr(n.X, f)
case *ast.BinaryExpr:
visitExpr(n.X, f)
visitExpr(n.Y, f)
case *ast.KeyValueExpr:
panic("unreachable") // unreachable, as we don't descend into elts of composite lits.
case *ast.ArrayType:
if n.Len != nil {
visitExpr(n.Len, f)
}
visitExpr(n.Elt, f)
case *ast.StructType:
visitFieldList(n.Fields, f)
case *ast.FuncType:
if tparams := n.TypeParams; tparams != nil {
visitFieldList(tparams, f)
}
if n.Params != nil {
visitFieldList(n.Params, f)
}
if n.Results != nil {
visitFieldList(n.Results, f)
}
case *ast.InterfaceType:
visitFieldList(n.Methods, f)
case *ast.MapType:
visitExpr(n.Key, f)
visitExpr(n.Value, f)
case *ast.ChanType:
visitExpr(n.Value, f)
case *ast.BadExpr:
// nothing to do
default:
panic(fmt.Sprintf("ast.Walk: unexpected node type %T", n))
}
}
func visitExprList(list []ast.Expr, f refVisitor) {
for _, x := range list {
visitExpr(x, f)
}
}
func visitFieldList(n *ast.FieldList, f refVisitor) {
for _, field := range n.List {
visitExpr(field.Type, f)
}
}
// -- strong component graph construction (plundered from go/pointer) --
// visit implements the depth-first search of Tarjan's SCC algorithm
// (see https://doi.org/10.1137/0201010).
// Precondition: x is canonical.
func (st *state) visit(x *declNode) {
checkCanonical(x)
x.index = st.index
x.lowlink = st.index
st.index++
st.stack = append(st.stack, x) // push
assert(x.scc == 0, "node revisited")
x.scc = -1
for y := range x.intRefs {
// Loop invariant: x is canonical.
y := y.find()
if x == y {
continue // nodes already coalesced
}
switch {
case y.scc > 0:
// y is already a collapsed SCC
case y.scc < 0:
// y is on the stack, and thus in the current SCC.
if y.index < x.lowlink {
x.lowlink = y.index
}
default:
// y is unvisited; visit it now.
st.visit(y)
// Note: x and y are now non-canonical.
x = x.find()
if y.lowlink < x.lowlink {
x.lowlink = y.lowlink
}
}
}
checkCanonical(x)
// Is x the root of an SCC?
if x.lowlink == x.index {
// Coalesce all nodes in the SCC.
for {
// Pop y from stack.
i := len(st.stack) - 1
y := st.stack[i]
st.stack = st.stack[:i]
checkCanonical(x)
checkCanonical(y)
if x == y {
break // SCC is complete.
}
coalesce(x, y)
}
// Accumulate union of extRefs over
// internal edges (to other SCCs).
for y := range x.intRefs {
y := y.find()
if y == x {
continue // already coalesced
}
assert(y.scc == 1, "edge to non-scc node")
for z := range y.extRefs {
if x.extRefs == nil {
x.extRefs = make(symbolSet)
}
x.extRefs[z] = true // extRefs: x U= y
}
}
x.scc = 1
}
}
// coalesce combines two nodes in the strong component graph.
// Precondition: x and y are canonical.
func coalesce(x, y *declNode) {
// x becomes y's canonical representative.
y.rep = x
// x accumulates y's internal references.
for z := range y.intRefs {
x.intRefs[z] = true
}
y.intRefs = nil
// x accumulates y's external references.
for z := range y.extRefs {
if x.extRefs == nil {
x.extRefs = make(symbolSet)
}
x.extRefs[z] = true
}
y.extRefs = nil
}
// find returns the canonical node decl.
// (The nodes form a disjoint set forest.)
func (decl *declNode) find() *declNode {
rep := decl.rep
if rep != decl {
rep = rep.find()
decl.rep = rep // simple path compression (no union-by-rank)
}
return rep
}
const debugSCC = false // enable assertions in strong-component algorithm
func checkCanonical(x *declNode) {
if debugSCC {
assert(x == x.find(), "not canonical")
}
}
func assert(cond bool, msg string) {
if debugSCC && !cond {
panic(msg)
}
}
// -- serialization --
// (The name says gob but in fact we use frob.)
var classesCodec = frob.CodecFor[gobClasses]()
type gobClasses struct {
Strings []string // table of strings (PackageIDs and names)
Classes []gobClass
}
type gobClass struct {
Decls []int32 // indices into gobClasses.Strings
Refs []int32 // list of (package, name) pairs, each an index into gobClasses.Strings
}
// encode encodes the equivalence classes,
// (classNames[i], classes[i]), for i in range classes.
//
// With the current encoding, across kubernetes,
// the encoded size distribution has
// p50 = 511B, p95 = 4.4KB, max = 108K.
func encode(classNames map[int][]string, classes []symbolSet) []byte {
payload := gobClasses{
Classes: make([]gobClass, 0, len(classNames)),
}
// index of unique strings
strings := make(map[string]int32)
stringIndex := func(s string) int32 {
i, ok := strings[s]
if !ok {
i = int32(len(payload.Strings))
strings[s] = i
payload.Strings = append(payload.Strings, s)
}
return i
}
var refs []symbol // recycled temporary
for class, names := range classNames {
set := classes[class]
// names, sorted
sort.Strings(names)
gobDecls := make([]int32, len(names))
for i, name := range names {
gobDecls[i] = stringIndex(name)
}
// refs, sorted by ascending (PackageID, name)
gobRefs := make([]int32, 0, 2*len(set))
for _, sym := range set.appendSorted(refs[:0]) {
gobRefs = append(gobRefs,
stringIndex(string(sym.pkg)),
stringIndex(sym.name))
}
payload.Classes = append(payload.Classes, gobClass{
Decls: gobDecls,
Refs: gobRefs,
})
}
return classesCodec.Encode(payload)
}
func decode(pkgIndex *PackageIndex, data []byte) []Class {
var payload gobClasses
classesCodec.Decode(data, &payload)
classes := make([]Class, len(payload.Classes))
for i, gobClass := range payload.Classes {
decls := make([]string, len(gobClass.Decls))
for i, decl := range gobClass.Decls {
decls[i] = payload.Strings[decl]
}
refs := make([]Symbol, len(gobClass.Refs)/2)
for i := range refs {
pkgID := pkgIndex.IndexID(metadata.PackageID(payload.Strings[gobClass.Refs[2*i]]))
name := payload.Strings[gobClass.Refs[2*i+1]]
refs[i] = Symbol{Package: pkgID, Name: name}
}
classes[i] = Class{
Decls: decls,
Refs: refs,
}
}
// Sort by ascending Decls[0].
// TODO(adonovan): move sort to encoder. Determinism is good.
sort.Slice(classes, func(i, j int) bool {
return classes[i].Decls[0] < classes[j].Decls[0]
})
return classes
}
|