1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package completion provides core functionality for code completion in Go
// editors and tools.
package completion
import (
"context"
"fmt"
"go/ast"
"go/build"
"go/constant"
"go/parser"
"go/printer"
"go/scanner"
"go/token"
"go/types"
"math"
"reflect"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unicode"
"golang.org/x/sync/errgroup"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/gopls/internal/cache"
"golang.org/x/tools/gopls/internal/cache/metadata"
"golang.org/x/tools/gopls/internal/file"
"golang.org/x/tools/gopls/internal/fuzzy"
"golang.org/x/tools/gopls/internal/golang"
"golang.org/x/tools/gopls/internal/golang/completion/snippet"
"golang.org/x/tools/gopls/internal/protocol"
"golang.org/x/tools/gopls/internal/settings"
goplsastutil "golang.org/x/tools/gopls/internal/util/astutil"
"golang.org/x/tools/gopls/internal/util/safetoken"
"golang.org/x/tools/gopls/internal/util/slices"
"golang.org/x/tools/gopls/internal/util/typesutil"
"golang.org/x/tools/internal/aliases"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/imports"
"golang.org/x/tools/internal/stdlib"
"golang.org/x/tools/internal/typeparams"
"golang.org/x/tools/internal/typesinternal"
"golang.org/x/tools/internal/versions"
)
// A CompletionItem represents a possible completion suggested by the algorithm.
type CompletionItem struct {
// Invariant: CompletionItem does not refer to syntax or types.
// Label is the primary text the user sees for this completion item.
Label string
// Detail is supplemental information to present to the user.
// This often contains the type or return type of the completion item.
Detail string
// InsertText is the text to insert if this item is selected.
// Any of the prefix that has already been typed is not trimmed.
// The insert text does not contain snippets.
InsertText string
Kind protocol.CompletionItemKind
Tags []protocol.CompletionItemTag
Deprecated bool // Deprecated, prefer Tags if available
// An optional array of additional TextEdits that are applied when
// selecting this completion.
//
// Additional text edits should be used to change text unrelated to the current cursor position
// (for example adding an import statement at the top of the file if the completion item will
// insert an unqualified type).
AdditionalTextEdits []protocol.TextEdit
// Depth is how many levels were searched to find this completion.
// For example when completing "foo<>", "fooBar" is depth 0, and
// "fooBar.Baz" is depth 1.
Depth int
// Score is the internal relevance score.
// A higher score indicates that this completion item is more relevant.
Score float64
// snippet is the LSP snippet for the completion item. The LSP
// specification contains details about LSP snippets. For example, a
// snippet for a function with the following signature:
//
// func foo(a, b, c int)
//
// would be:
//
// foo(${1:a int}, ${2: b int}, ${3: c int})
//
// If Placeholders is false in the CompletionOptions, the above
// snippet would instead be:
//
// foo(${1:})
snippet *snippet.Builder
// Documentation is the documentation for the completion item.
Documentation string
// isSlice reports whether the underlying type of the object
// from which this candidate was derived is a slice.
// (Used to complete append() calls.)
isSlice bool
}
// completionOptions holds completion specific configuration.
type completionOptions struct {
unimported bool
documentation bool
fullDocumentation bool
placeholders bool
snippets bool
postfix bool
matcher settings.Matcher
budget time.Duration
completeFunctionCalls bool
}
// Snippet is a convenience returns the snippet if available, otherwise
// the InsertText.
// used for an item, depending on if the callee wants placeholders or not.
func (i *CompletionItem) Snippet() string {
if i.snippet != nil {
return i.snippet.String()
}
return i.InsertText
}
// Scoring constants are used for weighting the relevance of different candidates.
const (
// stdScore is the base score for all completion items.
stdScore float64 = 1.0
// highScore indicates a very relevant completion item.
highScore float64 = 10.0
// lowScore indicates an irrelevant or not useful completion item.
lowScore float64 = 0.01
)
// matcher matches a candidate's label against the user input. The
// returned score reflects the quality of the match. A score of zero
// indicates no match, and a score of one means a perfect match.
type matcher interface {
Score(candidateLabel string) (score float32)
}
// prefixMatcher implements case sensitive prefix matching.
type prefixMatcher string
func (pm prefixMatcher) Score(candidateLabel string) float32 {
if strings.HasPrefix(candidateLabel, string(pm)) {
return 1
}
return -1
}
// insensitivePrefixMatcher implements case insensitive prefix matching.
type insensitivePrefixMatcher string
func (ipm insensitivePrefixMatcher) Score(candidateLabel string) float32 {
if strings.HasPrefix(strings.ToLower(candidateLabel), string(ipm)) {
return 1
}
return -1
}
// completer contains the necessary information for a single completion request.
type completer struct {
snapshot *cache.Snapshot
pkg *cache.Package
qf types.Qualifier // for qualifying typed expressions
mq golang.MetadataQualifier // for syntactic qualifying
opts *completionOptions
// completionContext contains information about the trigger for this
// completion request.
completionContext completionContext
// fh is a handle to the file associated with this completion request.
fh file.Handle
// filename is the name of the file associated with this completion request.
filename string
// file is the AST of the file associated with this completion request.
file *ast.File
// goversion is the version of Go in force in the file, as
// defined by x/tools/internal/versions. Empty if unknown.
// TODO(adonovan): with go1.22+ it should always be known.
goversion string
// (tokFile, pos) is the position at which the request was triggered.
tokFile *token.File
pos token.Pos
// path is the path of AST nodes enclosing the position.
path []ast.Node
// seen is the map that ensures we do not return duplicate results.
seen map[types.Object]bool
// items is the list of completion items returned.
items []CompletionItem
// completionCallbacks is a list of callbacks to collect completions that
// require expensive operations. This includes operations where we search
// through the entire module cache.
completionCallbacks []func(context.Context, *imports.Options) error
// surrounding describes the identifier surrounding the position.
surrounding *Selection
// inference contains information we've inferred about ideal
// candidates such as the candidate's type.
inference candidateInference
// enclosingFunc contains information about the function enclosing
// the position.
enclosingFunc *funcInfo
// enclosingCompositeLiteral contains information about the composite literal
// enclosing the position.
enclosingCompositeLiteral *compLitInfo
// deepState contains the current state of our deep completion search.
deepState deepCompletionState
// matcher matches the candidates against the surrounding prefix.
matcher matcher
// methodSetCache caches the types.NewMethodSet call, which is relatively
// expensive and can be called many times for the same type while searching
// for deep completions.
methodSetCache map[methodSetKey]*types.MethodSet
// tooNewSymbolsCache is a cache of
// [typesinternal.TooNewStdSymbols], recording for each std
// package which of its exported symbols are too new for
// the version of Go in force in the completion file.
// (The value is the minimum version in the form "go1.%d".)
tooNewSymbolsCache map[*types.Package]map[types.Object]string
// mapper converts the positions in the file from which the completion originated.
mapper *protocol.Mapper
// startTime is when we started processing this completion request. It does
// not include any time the request spent in the queue.
//
// Note: in CL 503016, startTime move to *after* type checking, but it was
// subsequently determined that it was better to keep setting it *before*
// type checking, so that the completion budget best approximates the user
// experience. See golang/go#62665 for more details.
startTime time.Time
// scopes contains all scopes defined by nodes in our path,
// including nil values for nodes that don't defined a scope. It
// also includes our package scope and the universal scope at the
// end.
scopes []*types.Scope
}
// tooNew reports whether obj is a standard library symbol that is too
// new for the specified Go version.
func (c *completer) tooNew(obj types.Object) bool {
pkg := obj.Pkg()
if pkg == nil {
return false // unsafe.Pointer or error.Error
}
disallowed, ok := c.tooNewSymbolsCache[pkg]
if !ok {
disallowed = typesinternal.TooNewStdSymbols(pkg, c.goversion)
c.tooNewSymbolsCache[pkg] = disallowed
}
return disallowed[obj] != ""
}
// funcInfo holds info about a function object.
type funcInfo struct {
// sig is the function declaration enclosing the position.
sig *types.Signature
// body is the function's body.
body *ast.BlockStmt
}
type compLitInfo struct {
// cl is the *ast.CompositeLit enclosing the position.
cl *ast.CompositeLit
// clType is the type of cl.
clType types.Type
// kv is the *ast.KeyValueExpr enclosing the position, if any.
kv *ast.KeyValueExpr
// inKey is true if we are certain the position is in the key side
// of a key-value pair.
inKey bool
// maybeInFieldName is true if inKey is false and it is possible
// we are completing a struct field name. For example,
// "SomeStruct{<>}" will be inKey=false, but maybeInFieldName=true
// because we _could_ be completing a field name.
maybeInFieldName bool
}
type importInfo struct {
importPath string
name string
}
type methodSetKey struct {
typ types.Type
addressable bool
}
type completionContext struct {
// triggerCharacter is the character used to trigger completion at current
// position, if any.
triggerCharacter string
// triggerKind is information about how a completion was triggered.
triggerKind protocol.CompletionTriggerKind
// commentCompletion is true if we are completing a comment.
commentCompletion bool
// packageCompletion is true if we are completing a package name.
packageCompletion bool
}
// A Selection represents the cursor position and surrounding identifier.
type Selection struct {
content string
tokFile *token.File
start, end, cursor token.Pos // relative to rng.TokFile
mapper *protocol.Mapper
}
// Range returns the surrounding identifier's protocol.Range.
func (p Selection) Range() (protocol.Range, error) {
return p.mapper.PosRange(p.tokFile, p.start, p.end)
}
// PrefixRange returns the protocol.Range of the prefix of the selection.
func (p Selection) PrefixRange() (protocol.Range, error) {
return p.mapper.PosRange(p.tokFile, p.start, p.cursor)
}
func (p Selection) Prefix() string {
return p.content[:p.cursor-p.start]
}
func (p Selection) Suffix() string {
return p.content[p.cursor-p.start:]
}
func (c *completer) setSurrounding(ident *ast.Ident) {
if c.surrounding != nil {
return
}
if !(ident.Pos() <= c.pos && c.pos <= ident.End()) {
return
}
c.surrounding = &Selection{
content: ident.Name,
cursor: c.pos,
// Overwrite the prefix only.
tokFile: c.tokFile,
start: ident.Pos(),
end: ident.End(),
mapper: c.mapper,
}
c.setMatcherFromPrefix(c.surrounding.Prefix())
}
func (c *completer) setMatcherFromPrefix(prefix string) {
switch c.opts.matcher {
case settings.Fuzzy:
c.matcher = fuzzy.NewMatcher(prefix)
case settings.CaseSensitive:
c.matcher = prefixMatcher(prefix)
default:
c.matcher = insensitivePrefixMatcher(strings.ToLower(prefix))
}
}
func (c *completer) getSurrounding() *Selection {
if c.surrounding == nil {
c.surrounding = &Selection{
content: "",
cursor: c.pos,
tokFile: c.tokFile,
start: c.pos,
end: c.pos,
mapper: c.mapper,
}
}
return c.surrounding
}
// candidate represents a completion candidate.
type candidate struct {
// obj is the types.Object to complete to.
// TODO(adonovan): eliminate dependence on go/types throughout this struct.
// See comment in (*completer).selector for explanation.
obj types.Object
// score is used to rank candidates.
score float64
// name is the deep object name path, e.g. "foo.bar"
name string
// detail is additional information about this item. If not specified,
// defaults to type string for the object.
detail string
// path holds the path from the search root (excluding the candidate
// itself) for a deep candidate.
path []types.Object
// pathInvokeMask is a bit mask tracking whether each entry in path
// should be formatted with "()" (i.e. whether it is a function
// invocation).
pathInvokeMask uint16
// mods contains modifications that should be applied to the
// candidate when inserted. For example, "foo" may be inserted as
// "*foo" or "foo()".
mods []typeModKind
// addressable is true if a pointer can be taken to the candidate.
addressable bool
// convertTo is a type that this candidate should be cast to. For
// example, if convertTo is float64, "foo" should be formatted as
// "float64(foo)".
convertTo types.Type
// imp is the import that needs to be added to this package in order
// for this candidate to be valid. nil if no import needed.
imp *importInfo
}
func (c candidate) hasMod(mod typeModKind) bool {
for _, m := range c.mods {
if m == mod {
return true
}
}
return false
}
// Completion returns a list of possible candidates for completion, given a
// a file and a position.
//
// The selection is computed based on the preceding identifier and can be used by
// the client to score the quality of the completion. For instance, some clients
// may tolerate imperfect matches as valid completion results, since users may make typos.
func Completion(ctx context.Context, snapshot *cache.Snapshot, fh file.Handle, protoPos protocol.Position, protoContext protocol.CompletionContext) ([]CompletionItem, *Selection, error) {
ctx, done := event.Start(ctx, "completion.Completion")
defer done()
startTime := time.Now()
pkg, pgf, err := golang.NarrowestPackageForFile(ctx, snapshot, fh.URI())
if err != nil || pgf.File.Package == token.NoPos {
// If we can't parse this file or find position for the package
// keyword, it may be missing a package declaration. Try offering
// suggestions for the package declaration.
// Note that this would be the case even if the keyword 'package' is
// present but no package name exists.
items, surrounding, innerErr := packageClauseCompletions(ctx, snapshot, fh, protoPos)
if innerErr != nil {
// return the error for GetParsedFile since it's more relevant in this situation.
return nil, nil, fmt.Errorf("getting file %s for Completion: %v (package completions: %v)", fh.URI(), err, innerErr)
}
return items, surrounding, nil
}
pos, err := pgf.PositionPos(protoPos)
if err != nil {
return nil, nil, err
}
// Completion is based on what precedes the cursor.
// Find the path to the position before pos.
path, _ := astutil.PathEnclosingInterval(pgf.File, pos-1, pos-1)
if path == nil {
return nil, nil, fmt.Errorf("cannot find node enclosing position")
}
// Check if completion at this position is valid. If not, return early.
switch n := path[0].(type) {
case *ast.BasicLit:
// Skip completion inside literals except for ImportSpec
if len(path) > 1 {
if _, ok := path[1].(*ast.ImportSpec); ok {
break
}
}
return nil, nil, nil
case *ast.CallExpr:
if n.Ellipsis.IsValid() && pos > n.Ellipsis && pos <= n.Ellipsis+token.Pos(len("...")) {
// Don't offer completions inside or directly after "...". For
// example, don't offer completions at "<>" in "foo(bar...<>").
return nil, nil, nil
}
case *ast.Ident:
// Don't offer completions for (most) defining identifiers.
if obj, ok := pkg.TypesInfo().Defs[n]; ok {
if v, ok := obj.(*types.Var); ok && v.IsField() && v.Embedded() {
// Allow completion of anonymous fields, since they may reference type
// names.
} else if pgf.File.Name == n {
// Allow package name completion.
} else {
// Check if we have special completion for this definition, such as
// test function name completion.
ans, sel := definition(path, obj, pgf)
if ans != nil {
sort.Slice(ans, func(i, j int) bool {
return ans[i].Score > ans[j].Score
})
return ans, sel, nil
}
return nil, nil, nil // No completions.
}
}
}
// Collect all surrounding scopes, innermost first.
scopes := golang.CollectScopes(pkg.TypesInfo(), path, pos)
scopes = append(scopes, pkg.Types().Scope(), types.Universe)
var goversion string // "" => no version check
// Prior go1.22, the behavior of FileVersion is not useful to us.
if slices.Contains(build.Default.ReleaseTags, "go1.22") {
goversion = versions.FileVersion(pkg.TypesInfo(), pgf.File) // may be ""
}
opts := snapshot.Options()
c := &completer{
pkg: pkg,
snapshot: snapshot,
qf: typesutil.FileQualifier(pgf.File, pkg.Types(), pkg.TypesInfo()),
mq: golang.MetadataQualifierForFile(snapshot, pgf.File, pkg.Metadata()),
completionContext: completionContext{
triggerCharacter: protoContext.TriggerCharacter,
triggerKind: protoContext.TriggerKind,
},
fh: fh,
filename: fh.URI().Path(),
tokFile: pgf.Tok,
file: pgf.File,
goversion: goversion,
path: path,
pos: pos,
seen: make(map[types.Object]bool),
enclosingFunc: enclosingFunction(path, pkg.TypesInfo()),
enclosingCompositeLiteral: enclosingCompositeLiteral(path, pos, pkg.TypesInfo()),
deepState: deepCompletionState{
enabled: opts.DeepCompletion,
},
opts: &completionOptions{
matcher: opts.Matcher,
unimported: opts.CompleteUnimported,
documentation: opts.CompletionDocumentation && opts.HoverKind != settings.NoDocumentation,
fullDocumentation: opts.HoverKind == settings.FullDocumentation,
placeholders: opts.UsePlaceholders,
budget: opts.CompletionBudget,
snippets: opts.InsertTextFormat == protocol.SnippetTextFormat,
postfix: opts.ExperimentalPostfixCompletions,
completeFunctionCalls: opts.CompleteFunctionCalls,
},
// default to a matcher that always matches
matcher: prefixMatcher(""),
methodSetCache: make(map[methodSetKey]*types.MethodSet),
tooNewSymbolsCache: make(map[*types.Package]map[types.Object]string),
mapper: pgf.Mapper,
startTime: startTime,
scopes: scopes,
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
// Compute the deadline for this operation. Deadline is relative to the
// search operation, not the entire completion RPC, as the work up until this
// point depends significantly on how long it took to type-check, which in
// turn depends on the timing of the request relative to other operations on
// the snapshot. Including that work in the budget leads to inconsistent
// results (and realistically, if type-checking took 200ms already, the user
// is unlikely to be significantly more bothered by e.g. another 100ms of
// search).
//
// Don't overload the context with this deadline, as we don't want to
// conflate user cancellation (=fail the operation) with our time limit
// (=stop searching and succeed with partial results).
var deadline *time.Time
if c.opts.budget > 0 {
d := startTime.Add(c.opts.budget)
deadline = &d
}
if surrounding := c.containingIdent(pgf.Src); surrounding != nil {
c.setSurrounding(surrounding)
}
c.inference = expectedCandidate(ctx, c)
err = c.collectCompletions(ctx)
if err != nil {
return nil, nil, err
}
// Deep search collected candidates and their members for more candidates.
c.deepSearch(ctx, 1, deadline)
// At this point we have a sufficiently complete set of results, and want to
// return as close to the completion budget as possible. Previously, we
// avoided cancelling the context because it could result in partial results
// for e.g. struct fields. At this point, we have a minimal valid set of
// candidates, and so truncating due to context cancellation is acceptable.
if c.opts.budget > 0 {
timeoutDuration := time.Until(c.startTime.Add(c.opts.budget))
ctx, cancel = context.WithTimeout(ctx, timeoutDuration)
defer cancel()
}
for _, callback := range c.completionCallbacks {
if deadline == nil || time.Now().Before(*deadline) {
if err := c.snapshot.RunProcessEnvFunc(ctx, callback); err != nil {
return nil, nil, err
}
}
}
// Search candidates populated by expensive operations like
// unimportedMembers etc. for more completion items.
c.deepSearch(ctx, 0, deadline)
// Statement candidates offer an entire statement in certain contexts, as
// opposed to a single object. Add statement candidates last because they
// depend on other candidates having already been collected.
c.addStatementCandidates()
c.sortItems()
return c.items, c.getSurrounding(), nil
}
// collectCompletions adds possible completion candidates to either the deep
// search queue or completion items directly for different completion contexts.
func (c *completer) collectCompletions(ctx context.Context) error {
// Inside import blocks, return completions for unimported packages.
for _, importSpec := range c.file.Imports {
if !(importSpec.Path.Pos() <= c.pos && c.pos <= importSpec.Path.End()) {
continue
}
return c.populateImportCompletions(importSpec)
}
// Inside comments, offer completions for the name of the relevant symbol.
for _, comment := range c.file.Comments {
if comment.Pos() < c.pos && c.pos <= comment.End() {
c.populateCommentCompletions(comment)
return nil
}
}
// Struct literals are handled entirely separately.
if c.wantStructFieldCompletions() {
// If we are definitely completing a struct field name, deep completions
// don't make sense.
if c.enclosingCompositeLiteral.inKey {
c.deepState.enabled = false
}
return c.structLiteralFieldName(ctx)
}
if lt := c.wantLabelCompletion(); lt != labelNone {
c.labels(lt)
return nil
}
if c.emptySwitchStmt() {
// Empty switch statements only admit "default" and "case" keywords.
c.addKeywordItems(map[string]bool{}, highScore, CASE, DEFAULT)
return nil
}
switch n := c.path[0].(type) {
case *ast.Ident:
if c.file.Name == n {
return c.packageNameCompletions(ctx, c.fh.URI(), n)
} else if sel, ok := c.path[1].(*ast.SelectorExpr); ok && sel.Sel == n {
// Is this the Sel part of a selector?
return c.selector(ctx, sel)
}
return c.lexical(ctx)
// The function name hasn't been typed yet, but the parens are there:
// recv.‸(arg)
case *ast.TypeAssertExpr:
// Create a fake selector expression.
//
// The name "_" is the convention used by go/parser to represent phantom
// selectors.
sel := &ast.Ident{NamePos: n.X.End() + token.Pos(len(".")), Name: "_"}
return c.selector(ctx, &ast.SelectorExpr{X: n.X, Sel: sel})
case *ast.SelectorExpr:
return c.selector(ctx, n)
// At the file scope, only keywords are allowed.
case *ast.BadDecl, *ast.File:
c.addKeywordCompletions()
default:
// fallback to lexical completions
return c.lexical(ctx)
}
return nil
}
// containingIdent returns the *ast.Ident containing pos, if any. It
// synthesizes an *ast.Ident to allow completion in the face of
// certain syntax errors.
func (c *completer) containingIdent(src []byte) *ast.Ident {
// In the normal case, our leaf AST node is the identifier being completed.
if ident, ok := c.path[0].(*ast.Ident); ok {
return ident
}
pos, tkn, lit := c.scanToken(src)
if !pos.IsValid() {
return nil
}
fakeIdent := &ast.Ident{Name: lit, NamePos: pos}
if _, isBadDecl := c.path[0].(*ast.BadDecl); isBadDecl {
// You don't get *ast.Idents at the file level, so look for bad
// decls and use the manually extracted token.
return fakeIdent
} else if c.emptySwitchStmt() {
// Only keywords are allowed in empty switch statements.
// *ast.Idents are not parsed, so we must use the manually
// extracted token.
return fakeIdent
} else if tkn.IsKeyword() {
// Otherwise, manually extract the prefix if our containing token
// is a keyword. This improves completion after an "accidental
// keyword", e.g. completing to "variance" in "someFunc(var<>)".
return fakeIdent
}
return nil
}
// scanToken scans pgh's contents for the token containing pos.
func (c *completer) scanToken(contents []byte) (token.Pos, token.Token, string) {
tok := c.pkg.FileSet().File(c.pos)
var s scanner.Scanner
s.Init(tok, contents, nil, 0)
for {
tknPos, tkn, lit := s.Scan()
if tkn == token.EOF || tknPos >= c.pos {
return token.NoPos, token.ILLEGAL, ""
}
if len(lit) > 0 && tknPos <= c.pos && c.pos <= tknPos+token.Pos(len(lit)) {
return tknPos, tkn, lit
}
}
}
func (c *completer) sortItems() {
sort.SliceStable(c.items, func(i, j int) bool {
// Sort by score first.
if c.items[i].Score != c.items[j].Score {
return c.items[i].Score > c.items[j].Score
}
// Then sort by label so order stays consistent. This also has the
// effect of preferring shorter candidates.
return c.items[i].Label < c.items[j].Label
})
}
// emptySwitchStmt reports whether pos is in an empty switch or select
// statement.
func (c *completer) emptySwitchStmt() bool {
block, ok := c.path[0].(*ast.BlockStmt)
if !ok || len(block.List) > 0 || len(c.path) == 1 {
return false
}
switch c.path[1].(type) {
case *ast.SwitchStmt, *ast.TypeSwitchStmt, *ast.SelectStmt:
return true
default:
return false
}
}
// populateImportCompletions yields completions for an import path around the cursor.
//
// Completions are suggested at the directory depth of the given import path so
// that we don't overwhelm the user with a large list of possibilities. As an
// example, a completion for the prefix "golang" results in "golang.org/".
// Completions for "golang.org/" yield its subdirectories
// (i.e. "golang.org/x/"). The user is meant to accept completion suggestions
// until they reach a complete import path.
func (c *completer) populateImportCompletions(searchImport *ast.ImportSpec) error {
if !strings.HasPrefix(searchImport.Path.Value, `"`) {
return nil
}
// deepSearch is not valuable for import completions.
c.deepState.enabled = false
importPath := searchImport.Path.Value
// Extract the text between the quotes (if any) in an import spec.
// prefix is the part of import path before the cursor.
prefixEnd := c.pos - searchImport.Path.Pos()
prefix := strings.Trim(importPath[:prefixEnd], `"`)
// The number of directories in the import path gives us the depth at
// which to search.
depth := len(strings.Split(prefix, "/")) - 1
content := importPath
start, end := searchImport.Path.Pos(), searchImport.Path.End()
namePrefix, nameSuffix := `"`, `"`
// If a starting quote is present, adjust surrounding to either after the
// cursor or after the first slash (/), except if cursor is at the starting
// quote. Otherwise we provide a completion including the starting quote.
if strings.HasPrefix(importPath, `"`) && c.pos > searchImport.Path.Pos() {
content = content[1:]
start++
if depth > 0 {
// Adjust textEdit start to replacement range. For ex: if current
// path was "golang.or/x/to<>ols/internal/", where <> is the cursor
// position, start of the replacement range would be after
// "golang.org/x/".
path := strings.SplitAfter(prefix, "/")
numChars := len(strings.Join(path[:len(path)-1], ""))
content = content[numChars:]
start += token.Pos(numChars)
}
namePrefix = ""
}
// We won't provide an ending quote if one is already present, except if
// cursor is after the ending quote but still in import spec. This is
// because cursor has to be in our textEdit range.
if strings.HasSuffix(importPath, `"`) && c.pos < searchImport.Path.End() {
end--
content = content[:len(content)-1]
nameSuffix = ""
}
c.surrounding = &Selection{
content: content,
cursor: c.pos,
tokFile: c.tokFile,
start: start,
end: end,
mapper: c.mapper,
}
seenImports := make(map[string]struct{})
for _, importSpec := range c.file.Imports {
if importSpec.Path.Value == importPath {
continue
}
seenImportPath, err := strconv.Unquote(importSpec.Path.Value)
if err != nil {
return err
}
seenImports[seenImportPath] = struct{}{}
}
var mu sync.Mutex // guard c.items locally, since searchImports is called in parallel
seen := make(map[string]struct{})
searchImports := func(pkg imports.ImportFix) {
path := pkg.StmtInfo.ImportPath
if _, ok := seenImports[path]; ok {
return
}
// Any package path containing fewer directories than the search
// prefix is not a match.
pkgDirList := strings.Split(path, "/")
if len(pkgDirList) < depth+1 {
return
}
pkgToConsider := strings.Join(pkgDirList[:depth+1], "/")
name := pkgDirList[depth]
// if we're adding an opening quote to completion too, set name to full
// package path since we'll need to overwrite that range.
if namePrefix == `"` {
name = pkgToConsider
}
score := pkg.Relevance
if len(pkgDirList)-1 == depth {
score *= highScore
} else {
// For incomplete package paths, add a terminal slash to indicate that the
// user should keep triggering completions.
name += "/"
pkgToConsider += "/"
}
if _, ok := seen[pkgToConsider]; ok {
return
}
seen[pkgToConsider] = struct{}{}
mu.Lock()
defer mu.Unlock()
name = namePrefix + name + nameSuffix
obj := types.NewPkgName(0, nil, name, types.NewPackage(pkgToConsider, name))
c.deepState.enqueue(candidate{
obj: obj,
detail: strconv.Quote(pkgToConsider),
score: score,
})
}
c.completionCallbacks = append(c.completionCallbacks, func(ctx context.Context, opts *imports.Options) error {
return imports.GetImportPaths(ctx, searchImports, prefix, c.filename, c.pkg.Types().Name(), opts.Env)
})
return nil
}
// populateCommentCompletions yields completions for comments preceding or in declarations.
func (c *completer) populateCommentCompletions(comment *ast.CommentGroup) {
// If the completion was triggered by a period, ignore it. These types of
// completions will not be useful in comments.
if c.completionContext.triggerCharacter == "." {
return
}
// Using the comment position find the line after
file := c.pkg.FileSet().File(comment.End())
if file == nil {
return
}
// Deep completion doesn't work properly in comments since we don't
// have a type object to complete further.
c.deepState.enabled = false
c.completionContext.commentCompletion = true
// Documentation isn't useful in comments, since it might end up being the
// comment itself.
c.opts.documentation = false
commentLine := safetoken.Line(file, comment.End())
// comment is valid, set surrounding as word boundaries around cursor
c.setSurroundingForComment(comment)
// Using the next line pos, grab and parse the exported symbol on that line
for _, n := range c.file.Decls {
declLine := safetoken.Line(file, n.Pos())
// if the comment is not in, directly above or on the same line as a declaration
if declLine != commentLine && declLine != commentLine+1 &&
!(n.Pos() <= comment.Pos() && comment.End() <= n.End()) {
continue
}
switch node := n.(type) {
// handle const, vars, and types
case *ast.GenDecl:
for _, spec := range node.Specs {
switch spec := spec.(type) {
case *ast.ValueSpec:
for _, name := range spec.Names {
if name.String() == "_" {
continue
}
obj := c.pkg.TypesInfo().ObjectOf(name)
c.deepState.enqueue(candidate{obj: obj, score: stdScore})
}
case *ast.TypeSpec:
// add TypeSpec fields to completion
switch typeNode := spec.Type.(type) {
case *ast.StructType:
c.addFieldItems(typeNode.Fields)
case *ast.FuncType:
c.addFieldItems(typeNode.Params)
c.addFieldItems(typeNode.Results)
case *ast.InterfaceType:
c.addFieldItems(typeNode.Methods)
}
if spec.Name.String() == "_" {
continue
}
obj := c.pkg.TypesInfo().ObjectOf(spec.Name)
// Type name should get a higher score than fields but not highScore by default
// since field near a comment cursor gets a highScore
score := stdScore * 1.1
// If type declaration is on the line after comment, give it a highScore.
if declLine == commentLine+1 {
score = highScore
}
c.deepState.enqueue(candidate{obj: obj, score: score})
}
}
// handle functions
case *ast.FuncDecl:
c.addFieldItems(node.Recv)
c.addFieldItems(node.Type.Params)
c.addFieldItems(node.Type.Results)
// collect receiver struct fields
if node.Recv != nil {
sig := c.pkg.TypesInfo().Defs[node.Name].(*types.Func).Type().(*types.Signature)
_, named := typesinternal.ReceiverNamed(sig.Recv()) // may be nil if ill-typed
if named != nil {
if recvStruct, ok := named.Underlying().(*types.Struct); ok {
for i := 0; i < recvStruct.NumFields(); i++ {
field := recvStruct.Field(i)
c.deepState.enqueue(candidate{obj: field, score: lowScore})
}
}
}
}
if node.Name.String() == "_" {
continue
}
obj := c.pkg.TypesInfo().ObjectOf(node.Name)
if obj == nil || obj.Pkg() != nil && obj.Pkg() != c.pkg.Types() {
continue
}
c.deepState.enqueue(candidate{obj: obj, score: highScore})
}
}
}
// sets word boundaries surrounding a cursor for a comment
func (c *completer) setSurroundingForComment(comments *ast.CommentGroup) {
var cursorComment *ast.Comment
for _, comment := range comments.List {
if c.pos >= comment.Pos() && c.pos <= comment.End() {
cursorComment = comment
break
}
}
// if cursor isn't in the comment
if cursorComment == nil {
return
}
// index of cursor in comment text
cursorOffset := int(c.pos - cursorComment.Pos())
start, end := cursorOffset, cursorOffset
for start > 0 && isValidIdentifierChar(cursorComment.Text[start-1]) {
start--
}
for end < len(cursorComment.Text) && isValidIdentifierChar(cursorComment.Text[end]) {
end++
}
c.surrounding = &Selection{
content: cursorComment.Text[start:end],
cursor: c.pos,
tokFile: c.tokFile,
start: token.Pos(int(cursorComment.Slash) + start),
end: token.Pos(int(cursorComment.Slash) + end),
mapper: c.mapper,
}
c.setMatcherFromPrefix(c.surrounding.Prefix())
}
// isValidIdentifierChar returns true if a byte is a valid go identifier
// character, i.e. unicode letter or digit or underscore.
func isValidIdentifierChar(char byte) bool {
charRune := rune(char)
return unicode.In(charRune, unicode.Letter, unicode.Digit) || char == '_'
}
// adds struct fields, interface methods, function declaration fields to completion
func (c *completer) addFieldItems(fields *ast.FieldList) {
if fields == nil {
return
}
cursor := c.surrounding.cursor
for _, field := range fields.List {
for _, name := range field.Names {
if name.String() == "_" {
continue
}
obj := c.pkg.TypesInfo().ObjectOf(name)
if obj == nil {
continue
}
// if we're in a field comment/doc, score that field as more relevant
score := stdScore
if field.Comment != nil && field.Comment.Pos() <= cursor && cursor <= field.Comment.End() {
score = highScore
} else if field.Doc != nil && field.Doc.Pos() <= cursor && cursor <= field.Doc.End() {
score = highScore
}
c.deepState.enqueue(candidate{obj: obj, score: score})
}
}
}
func (c *completer) wantStructFieldCompletions() bool {
clInfo := c.enclosingCompositeLiteral
if clInfo == nil {
return false
}
return is[*types.Struct](clInfo.clType) && (clInfo.inKey || clInfo.maybeInFieldName)
}
func (c *completer) wantTypeName() bool {
return !c.completionContext.commentCompletion && c.inference.typeName.wantTypeName
}
// See https://golang.org/issue/36001. Unimported completions are expensive.
const (
maxUnimportedPackageNames = 5
unimportedMemberTarget = 100
)
// selector finds completions for the specified selector expression.
func (c *completer) selector(ctx context.Context, sel *ast.SelectorExpr) error {
c.inference.objChain = objChain(c.pkg.TypesInfo(), sel.X)
// True selector?
if tv, ok := c.pkg.TypesInfo().Types[sel.X]; ok {
c.methodsAndFields(tv.Type, tv.Addressable(), nil, c.deepState.enqueue)
c.addPostfixSnippetCandidates(ctx, sel)
return nil
}
id, ok := sel.X.(*ast.Ident)
if !ok {
return nil
}
// Treat sel as a qualified identifier.
var filter func(*metadata.Package) bool
needImport := false
if pkgName, ok := c.pkg.TypesInfo().Uses[id].(*types.PkgName); ok {
// Qualified identifier with import declaration.
imp := pkgName.Imported()
// Known direct dependency? Expand using type information.
if _, ok := c.pkg.Metadata().DepsByPkgPath[golang.PackagePath(imp.Path())]; ok {
c.packageMembers(imp, stdScore, nil, c.deepState.enqueue)
return nil
}
// Imported declaration with missing type information.
// Fall through to shallow completion of unimported package members.
// Match candidate packages by path.
filter = func(mp *metadata.Package) bool {
return strings.TrimPrefix(string(mp.PkgPath), "vendor/") == imp.Path()
}
} else {
// Qualified identifier without import declaration.
// Match candidate packages by name.
filter = func(mp *metadata.Package) bool {
return string(mp.Name) == id.Name
}
needImport = true
}
// Search unimported packages.
if !c.opts.unimported {
return nil // feature disabled
}
// -- completion of symbols in unimported packages --
// The deep completion algorithm is exceedingly complex and
// deeply coupled to the now obsolete notions that all
// token.Pos values can be interpreted by as a single FileSet
// belonging to the Snapshot and that all types.Object values
// are canonicalized by a single types.Importer mapping.
// These invariants are no longer true now that gopls uses
// an incremental approach, parsing and type-checking each
// package separately.
//
// Consequently, completion of symbols defined in packages that
// are not currently imported by the query file cannot use the
// deep completion machinery which is based on type information.
// Instead it must use only syntax information from a quick
// parse of top-level declarations (but not function bodies).
//
// TODO(adonovan): rewrite the deep completion machinery to
// not assume global Pos/Object realms and then use export
// data instead of the quick parse approach taken here.
// First, we search among packages in the forward transitive
// closure of the workspace.
// We'll use a fast parse to extract package members
// from those that match the name/path criterion.
all, err := c.snapshot.AllMetadata(ctx)
if err != nil {
return err
}
known := make(map[golang.PackagePath]*metadata.Package)
for _, mp := range all {
if mp.Name == "main" {
continue // not importable
}
if mp.IsIntermediateTestVariant() {
continue
}
// The only test variant we admit is "p [p.test]"
// when we are completing within "p_test [p.test]",
// as in that case we would like to offer completions
// of the test variants' additional symbols.
if mp.ForTest != "" && c.pkg.Metadata().PkgPath != mp.ForTest+"_test" {
continue
}
if !filter(mp) {
continue
}
// Prefer previous entry unless this one is its test variant.
if mp.ForTest != "" || known[mp.PkgPath] == nil {
known[mp.PkgPath] = mp
}
}
paths := make([]string, 0, len(known))
for path := range known {
paths = append(paths, string(path))
}
// Rank import paths as goimports would.
var relevances map[string]float64
if len(paths) > 0 {
if err := c.snapshot.RunProcessEnvFunc(ctx, func(ctx context.Context, opts *imports.Options) error {
var err error
relevances, err = imports.ScoreImportPaths(ctx, opts.Env, paths)
return err
}); err != nil {
return err
}
sort.Slice(paths, func(i, j int) bool {
return relevances[paths[i]] > relevances[paths[j]]
})
}
// quickParse does a quick parse of a single file of package m,
// extracts exported package members and adds candidates to c.items.
// TODO(rfindley): synchronizing access to c here does not feel right.
// Consider adding a concurrency-safe API for completer.
var cMu sync.Mutex // guards c.items and c.matcher
var enough int32 // atomic bool
quickParse := func(uri protocol.DocumentURI, mp *metadata.Package, tooNew map[string]bool) error {
if atomic.LoadInt32(&enough) != 0 {
return nil
}
fh, err := c.snapshot.ReadFile(ctx, uri)
if err != nil {
return err
}
content, err := fh.Content()
if err != nil {
return err
}
path := string(mp.PkgPath)
forEachPackageMember(content, func(tok token.Token, id *ast.Ident, fn *ast.FuncDecl) {
if atomic.LoadInt32(&enough) != 0 {
return
}
if !id.IsExported() {
return
}
if tooNew[id.Name] {
return // symbol too new for requesting file's Go's version
}
cMu.Lock()
score := c.matcher.Score(id.Name)
cMu.Unlock()
if sel.Sel.Name != "_" && score == 0 {
return // not a match; avoid constructing the completion item below
}
// The only detail is the kind and package: `var (from "example.com/foo")`
// TODO(adonovan): pretty-print FuncDecl.FuncType or TypeSpec.Type?
// TODO(adonovan): should this score consider the actual c.matcher.Score
// of the item? How does this compare with the deepState.enqueue path?
item := CompletionItem{
Label: id.Name,
Detail: fmt.Sprintf("%s (from %q)", strings.ToLower(tok.String()), mp.PkgPath),
InsertText: id.Name,
Score: float64(score) * unimportedScore(relevances[path]),
}
switch tok {
case token.FUNC:
item.Kind = protocol.FunctionCompletion
case token.VAR:
item.Kind = protocol.VariableCompletion
case token.CONST:
item.Kind = protocol.ConstantCompletion
case token.TYPE:
// Without types, we can't distinguish Class from Interface.
item.Kind = protocol.ClassCompletion
}
if needImport {
imp := &importInfo{importPath: path}
if imports.ImportPathToAssumedName(path) != string(mp.Name) {
imp.name = string(mp.Name)
}
item.AdditionalTextEdits, _ = c.importEdits(imp)
}
// For functions, add a parameter snippet.
if fn != nil {
paramList := func(list *ast.FieldList) []string {
var params []string
if list != nil {
var cfg printer.Config // slight overkill
param := func(name string, typ ast.Expr) {
var buf strings.Builder
buf.WriteString(name)
buf.WriteByte(' ')
cfg.Fprint(&buf, token.NewFileSet(), typ)
params = append(params, buf.String())
}
for _, field := range list.List {
if field.Names != nil {
for _, name := range field.Names {
param(name.Name, field.Type)
}
} else {
param("_", field.Type)
}
}
}
return params
}
// Ideally we would eliminate the suffix of type
// parameters that are redundant with inference
// from the argument types (#51783), but it's
// quite fiddly to do using syntax alone.
// (See inferableTypeParams in format.go.)
tparams := paramList(fn.Type.TypeParams)
params := paramList(fn.Type.Params)
var sn snippet.Builder
c.functionCallSnippet(id.Name, tparams, params, &sn)
item.snippet = &sn
}
cMu.Lock()
c.items = append(c.items, item)
if len(c.items) >= unimportedMemberTarget {
atomic.StoreInt32(&enough, 1)
}
cMu.Unlock()
})
return nil
}
var goversion string
// TODO(adonovan): after go1.21, replace with:
// goversion = c.pkg.GetTypesInfo().FileVersions[c.file]
if v := reflect.ValueOf(c.pkg.TypesInfo()).Elem().FieldByName("FileVersions"); v.IsValid() {
goversion = v.Interface().(map[*ast.File]string)[c.file] // may be ""
}
// Extract the package-level candidates using a quick parse.
var g errgroup.Group
for _, path := range paths {
mp := known[golang.PackagePath(path)]
// For standard packages, build a filter of symbols that
// are too new for the requesting file's Go version.
var tooNew map[string]bool
if syms, ok := stdlib.PackageSymbols[path]; ok && goversion != "" {
tooNew = make(map[string]bool)
for _, sym := range syms {
if versions.Before(goversion, sym.Version.String()) {
tooNew[sym.Name] = true
}
}
}
for _, uri := range mp.CompiledGoFiles {
uri := uri
g.Go(func() error {
return quickParse(uri, mp, tooNew)
})
}
}
if err := g.Wait(); err != nil {
return err
}
// In addition, we search in the module cache using goimports.
ctx, cancel := context.WithCancel(ctx)
var mu sync.Mutex
add := func(pkgExport imports.PackageExport) {
if ignoreUnimportedCompletion(pkgExport.Fix) {
return
}
mu.Lock()
defer mu.Unlock()
// TODO(adonovan): what if the actual package has a vendor/ prefix?
if _, ok := known[golang.PackagePath(pkgExport.Fix.StmtInfo.ImportPath)]; ok {
return // We got this one above.
}
// Continue with untyped proposals.
pkg := types.NewPackage(pkgExport.Fix.StmtInfo.ImportPath, pkgExport.Fix.IdentName)
for _, symbol := range pkgExport.Exports {
if goversion != "" && versions.Before(goversion, symbol.Version.String()) {
continue // symbol too new for this file
}
score := unimportedScore(pkgExport.Fix.Relevance)
c.deepState.enqueue(candidate{
obj: types.NewVar(0, pkg, symbol.Name, nil),
score: score,
imp: &importInfo{
importPath: pkgExport.Fix.StmtInfo.ImportPath,
name: pkgExport.Fix.StmtInfo.Name,
},
})
}
if len(c.items) >= unimportedMemberTarget {
cancel()
}
}
c.completionCallbacks = append(c.completionCallbacks, func(ctx context.Context, opts *imports.Options) error {
defer cancel()
return imports.GetPackageExports(ctx, add, id.Name, c.filename, c.pkg.Types().Name(), opts.Env)
})
return nil
}
// unimportedScore returns a score for an unimported package that is generally
// lower than other candidates.
func unimportedScore(relevance float64) float64 {
return (stdScore + .1*relevance) / 2
}
func (c *completer) packageMembers(pkg *types.Package, score float64, imp *importInfo, cb func(candidate)) {
scope := pkg.Scope()
for _, name := range scope.Names() {
obj := scope.Lookup(name)
if c.tooNew(obj) {
continue // std symbol too new for file's Go version
}
cb(candidate{
obj: obj,
score: score,
imp: imp,
addressable: isVar(obj),
})
}
}
// ignoreUnimportedCompletion reports whether an unimported completion
// resulting in the given import should be ignored.
func ignoreUnimportedCompletion(fix *imports.ImportFix) bool {
// golang/go#60062: don't add unimported completion to golang.org/toolchain.
return fix != nil && strings.HasPrefix(fix.StmtInfo.ImportPath, "golang.org/toolchain")
}
func (c *completer) methodsAndFields(typ types.Type, addressable bool, imp *importInfo, cb func(candidate)) {
mset := c.methodSetCache[methodSetKey{typ, addressable}]
if mset == nil {
if addressable && !types.IsInterface(typ) && !isPointer(typ) {
// Add methods of *T, which includes methods with receiver T.
mset = types.NewMethodSet(types.NewPointer(typ))
} else {
// Add methods of T.
mset = types.NewMethodSet(typ)
}
c.methodSetCache[methodSetKey{typ, addressable}] = mset
}
if isStarTestingDotF(typ) && addressable {
// is that a sufficient test? (or is more care needed?)
if c.fuzz(mset, imp, cb) {
return
}
}
for i := 0; i < mset.Len(); i++ {
obj := mset.At(i).Obj()
// to the other side of the cb() queue?
if c.tooNew(obj) {
continue // std method too new for file's Go version
}
cb(candidate{
obj: mset.At(i).Obj(),
score: stdScore,
imp: imp,
addressable: addressable || isPointer(typ),
})
}
// Add fields of T.
eachField(typ, func(v *types.Var) {
if c.tooNew(v) {
return // std field too new for file's Go version
}
cb(candidate{
obj: v,
score: stdScore - 0.01,
imp: imp,
addressable: addressable || isPointer(typ),
})
})
}
// isStarTestingDotF reports whether typ is *testing.F.
func isStarTestingDotF(typ types.Type) bool {
// No Unalias, since go test doesn't consider
// types when enumeratinf test funcs, only syntax.
ptr, _ := typ.(*types.Pointer)
if ptr == nil {
return false
}
named, _ := ptr.Elem().(*types.Named)
if named == nil {
return false
}
obj := named.Obj()
// obj.Pkg is nil for the error type.
return obj != nil && obj.Pkg() != nil && obj.Pkg().Path() == "testing" && obj.Name() == "F"
}
// lexical finds completions in the lexical environment.
func (c *completer) lexical(ctx context.Context) error {
var (
builtinIota = types.Universe.Lookup("iota")
builtinNil = types.Universe.Lookup("nil")
// TODO(rfindley): only allow "comparable" where it is valid (in constraint
// position or embedded in interface declarations).
// builtinComparable = types.Universe.Lookup("comparable")
)
// Track seen variables to avoid showing completions for shadowed variables.
// This works since we look at scopes from innermost to outermost.
seen := make(map[string]struct{})
// Process scopes innermost first.
for i, scope := range c.scopes {
if scope == nil {
continue
}
Names:
for _, name := range scope.Names() {
declScope, obj := scope.LookupParent(name, c.pos)
if declScope != scope {
continue // Name was declared in some enclosing scope, or not at all.
}
// If obj's type is invalid, find the AST node that defines the lexical block
// containing the declaration of obj. Don't resolve types for packages.
if !isPkgName(obj) && !typeIsValid(obj.Type()) {
// Match the scope to its ast.Node. If the scope is the package scope,
// use the *ast.File as the starting node.
var node ast.Node
if i < len(c.path) {
node = c.path[i]
} else if i == len(c.path) { // use the *ast.File for package scope
node = c.path[i-1]
}
if node != nil {
if resolved := resolveInvalid(c.pkg.FileSet(), obj, node, c.pkg.TypesInfo()); resolved != nil {
obj = resolved
}
}
}
// Don't use LHS of decl in RHS.
for _, ident := range enclosingDeclLHS(c.path) {
if obj.Pos() == ident.Pos() {
continue Names
}
}
// Don't suggest "iota" outside of const decls.
if obj == builtinIota && !c.inConstDecl() {
continue
}
// Rank outer scopes lower than inner.
score := stdScore * math.Pow(.99, float64(i))
// Dowrank "nil" a bit so it is ranked below more interesting candidates.
if obj == builtinNil {
score /= 2
}
// If we haven't already added a candidate for an object with this name.
if _, ok := seen[obj.Name()]; !ok {
seen[obj.Name()] = struct{}{}
c.deepState.enqueue(candidate{
obj: obj,
score: score,
addressable: isVar(obj),
})
}
}
}
if c.inference.objType != nil {
if named, ok := aliases.Unalias(typesinternal.Unpointer(c.inference.objType)).(*types.Named); ok {
// If we expected a named type, check the type's package for
// completion items. This is useful when the current file hasn't
// imported the type's package yet.
if named.Obj() != nil && named.Obj().Pkg() != nil {
pkg := named.Obj().Pkg()
// Make sure the package name isn't already in use by another
// object, and that this file doesn't import the package yet.
// TODO(adonovan): what if pkg.Path has vendor/ prefix?
if _, ok := seen[pkg.Name()]; !ok && pkg != c.pkg.Types() && !alreadyImports(c.file, golang.ImportPath(pkg.Path())) {
seen[pkg.Name()] = struct{}{}
obj := types.NewPkgName(0, nil, pkg.Name(), pkg)
imp := &importInfo{
importPath: pkg.Path(),
}
if imports.ImportPathToAssumedName(pkg.Path()) != pkg.Name() {
imp.name = pkg.Name()
}
c.deepState.enqueue(candidate{
obj: obj,
score: stdScore,
imp: imp,
})
}
}
}
}
if c.opts.unimported {
if err := c.unimportedPackages(ctx, seen); err != nil {
return err
}
}
if c.inference.typeName.isTypeParam {
// If we are completing a type param, offer each structural type.
// This ensures we suggest "[]int" and "[]float64" for a constraint
// with type union "[]int | []float64".
if t, ok := c.inference.objType.(*types.Interface); ok {
if terms, err := typeparams.InterfaceTermSet(t); err == nil {
for _, term := range terms {
c.injectType(ctx, term.Type())
}
}
}
} else {
c.injectType(ctx, c.inference.objType)
}
// Add keyword completion items appropriate in the current context.
c.addKeywordCompletions()
return nil
}
// injectType manufactures candidates based on the given type. This is
// intended for types not discoverable via lexical search, such as
// composite and/or generic types. For example, if the type is "[]int",
// this method makes sure you get candidates "[]int{}" and "[]int"
// (the latter applies when completing a type name).
func (c *completer) injectType(ctx context.Context, t types.Type) {
if t == nil {
return
}
t = typesinternal.Unpointer(t)
// If we have an expected type and it is _not_ a named type, handle
// it specially. Non-named types like "[]int" will never be
// considered via a lexical search, so we need to directly inject
// them. Also allow generic types since lexical search does not
// infer instantiated versions of them.
if named, ok := aliases.Unalias(t).(*types.Named); !ok || named.TypeParams().Len() > 0 {
// If our expected type is "[]int", this will add a literal
// candidate of "[]int{}".
c.literal(ctx, t, nil)
if _, isBasic := t.(*types.Basic); !isBasic {
// If we expect a non-basic type name (e.g. "[]int"), hack up
// a named type whose name is literally "[]int". This allows
// us to reuse our object based completion machinery.
fakeNamedType := candidate{
obj: types.NewTypeName(token.NoPos, nil, types.TypeString(t, c.qf), t),
score: stdScore,
}
// Make sure the type name matches before considering
// candidate. This cuts down on useless candidates.
if c.matchingTypeName(&fakeNamedType) {
c.deepState.enqueue(fakeNamedType)
}
}
}
}
func (c *completer) unimportedPackages(ctx context.Context, seen map[string]struct{}) error {
var prefix string
if c.surrounding != nil {
prefix = c.surrounding.Prefix()
}
// Don't suggest unimported packages if we have absolutely nothing
// to go on.
if prefix == "" {
return nil
}
count := 0
// Search the forward transitive closure of the workspace.
all, err := c.snapshot.AllMetadata(ctx)
if err != nil {
return err
}
pkgNameByPath := make(map[golang.PackagePath]string)
var paths []string // actually PackagePaths
for _, mp := range all {
if mp.ForTest != "" {
continue // skip all test variants
}
if mp.Name == "main" {
continue // main is non-importable
}
if !strings.HasPrefix(string(mp.Name), prefix) {
continue // not a match
}
paths = append(paths, string(mp.PkgPath))
pkgNameByPath[mp.PkgPath] = string(mp.Name)
}
// Rank candidates using goimports' algorithm.
var relevances map[string]float64
if len(paths) != 0 {
if err := c.snapshot.RunProcessEnvFunc(ctx, func(ctx context.Context, opts *imports.Options) error {
var err error
relevances, err = imports.ScoreImportPaths(ctx, opts.Env, paths)
return err
}); err != nil {
return err
}
}
sort.Slice(paths, func(i, j int) bool {
if relevances[paths[i]] != relevances[paths[j]] {
return relevances[paths[i]] > relevances[paths[j]]
}
// Fall back to lexical sort to keep truncated set of candidates
// in a consistent order.
return paths[i] < paths[j]
})
for _, path := range paths {
name := pkgNameByPath[golang.PackagePath(path)]
if _, ok := seen[name]; ok {
continue
}
imp := &importInfo{
importPath: path,
}
if imports.ImportPathToAssumedName(path) != name {
imp.name = name
}
if count >= maxUnimportedPackageNames {
return nil
}
c.deepState.enqueue(candidate{
// Pass an empty *types.Package to disable deep completions.
obj: types.NewPkgName(0, nil, name, types.NewPackage(path, name)),
score: unimportedScore(relevances[path]),
imp: imp,
})
count++
}
var mu sync.Mutex
add := func(pkg imports.ImportFix) {
if ignoreUnimportedCompletion(&pkg) {
return
}
mu.Lock()
defer mu.Unlock()
if _, ok := seen[pkg.IdentName]; ok {
return
}
if _, ok := relevances[pkg.StmtInfo.ImportPath]; ok {
return
}
if count >= maxUnimportedPackageNames {
return
}
// Do not add the unimported packages to seen, since we can have
// multiple packages of the same name as completion suggestions, since
// only one will be chosen.
obj := types.NewPkgName(0, nil, pkg.IdentName, types.NewPackage(pkg.StmtInfo.ImportPath, pkg.IdentName))
c.deepState.enqueue(candidate{
obj: obj,
score: unimportedScore(pkg.Relevance),
imp: &importInfo{
importPath: pkg.StmtInfo.ImportPath,
name: pkg.StmtInfo.Name,
},
})
count++
}
c.completionCallbacks = append(c.completionCallbacks, func(ctx context.Context, opts *imports.Options) error {
return imports.GetAllCandidates(ctx, add, prefix, c.filename, c.pkg.Types().Name(), opts.Env)
})
return nil
}
// alreadyImports reports whether f has an import with the specified path.
func alreadyImports(f *ast.File, path golang.ImportPath) bool {
for _, s := range f.Imports {
if metadata.UnquoteImportPath(s) == path {
return true
}
}
return false
}
func (c *completer) inConstDecl() bool {
for _, n := range c.path {
if decl, ok := n.(*ast.GenDecl); ok && decl.Tok == token.CONST {
return true
}
}
return false
}
// structLiteralFieldName finds completions for struct field names inside a struct literal.
func (c *completer) structLiteralFieldName(ctx context.Context) error {
clInfo := c.enclosingCompositeLiteral
// Mark fields of the composite literal that have already been set,
// except for the current field.
addedFields := make(map[*types.Var]bool)
for _, el := range clInfo.cl.Elts {
if kvExpr, ok := el.(*ast.KeyValueExpr); ok {
if clInfo.kv == kvExpr {
continue
}
if key, ok := kvExpr.Key.(*ast.Ident); ok {
if used, ok := c.pkg.TypesInfo().Uses[key]; ok {
if usedVar, ok := used.(*types.Var); ok {
addedFields[usedVar] = true
}
}
}
}
}
// Add struct fields.
if t, ok := aliases.Unalias(clInfo.clType).(*types.Struct); ok {
const deltaScore = 0.0001
for i := 0; i < t.NumFields(); i++ {
field := t.Field(i)
if !addedFields[field] {
c.deepState.enqueue(candidate{
obj: field,
score: highScore - float64(i)*deltaScore,
})
}
}
// Fall through and add lexical completions if we aren't
// certain we are in the key part of a key-value pair.
if !clInfo.maybeInFieldName {
return nil
}
}
return c.lexical(ctx)
}
// enclosingCompositeLiteral returns information about the composite literal enclosing the
// position.
func enclosingCompositeLiteral(path []ast.Node, pos token.Pos, info *types.Info) *compLitInfo {
for _, n := range path {
switch n := n.(type) {
case *ast.CompositeLit:
// The enclosing node will be a composite literal if the user has just
// opened the curly brace (e.g. &x{<>) or the completion request is triggered
// from an already completed composite literal expression (e.g. &x{foo: 1, <>})
//
// The position is not part of the composite literal unless it falls within the
// curly braces (e.g. "foo.Foo<>Struct{}").
if !(n.Lbrace < pos && pos <= n.Rbrace) {
// Keep searching since we may yet be inside a composite literal.
// For example "Foo{B: Ba<>{}}".
break
}
tv, ok := info.Types[n]
if !ok {
return nil
}
clInfo := compLitInfo{
cl: n,
clType: typesinternal.Unpointer(tv.Type).Underlying(),
}
var (
expr ast.Expr
hasKeys bool
)
for _, el := range n.Elts {
// Remember the expression that the position falls in, if any.
if el.Pos() <= pos && pos <= el.End() {
expr = el
}
if kv, ok := el.(*ast.KeyValueExpr); ok {
hasKeys = true
// If expr == el then we know the position falls in this expression,
// so also record kv as the enclosing *ast.KeyValueExpr.
if expr == el {
clInfo.kv = kv
break
}
}
}
if clInfo.kv != nil {
// If in a *ast.KeyValueExpr, we know we are in the key if the position
// is to the left of the colon (e.g. "Foo{F<>: V}".
clInfo.inKey = pos <= clInfo.kv.Colon
} else if hasKeys {
// If we aren't in a *ast.KeyValueExpr but the composite literal has
// other *ast.KeyValueExprs, we must be on the key side of a new
// *ast.KeyValueExpr (e.g. "Foo{F: V, <>}").
clInfo.inKey = true
} else {
switch clInfo.clType.(type) {
case *types.Struct:
if len(n.Elts) == 0 {
// If the struct literal is empty, next could be a struct field
// name or an expression (e.g. "Foo{<>}" could become "Foo{F:}"
// or "Foo{someVar}").
clInfo.maybeInFieldName = true
} else if len(n.Elts) == 1 {
// If there is one expression and the position is in that expression
// and the expression is an identifier, we may be writing a field
// name or an expression (e.g. "Foo{F<>}").
_, clInfo.maybeInFieldName = expr.(*ast.Ident)
}
case *types.Map:
// If we aren't in a *ast.KeyValueExpr we must be adding a new key
// to the map.
clInfo.inKey = true
}
}
return &clInfo
default:
if breaksExpectedTypeInference(n, pos) {
return nil
}
}
}
return nil
}
// enclosingFunction returns the signature and body of the function
// enclosing the given position.
func enclosingFunction(path []ast.Node, info *types.Info) *funcInfo {
for _, node := range path {
switch t := node.(type) {
case *ast.FuncDecl:
if obj, ok := info.Defs[t.Name]; ok {
return &funcInfo{
sig: obj.Type().(*types.Signature),
body: t.Body,
}
}
case *ast.FuncLit:
if typ, ok := info.Types[t]; ok {
if sig, _ := typ.Type.(*types.Signature); sig == nil {
// golang/go#49397: it should not be possible, but we somehow arrived
// here with a non-signature type, most likely due to AST mangling
// such that node.Type is not a FuncType.
return nil
}
return &funcInfo{
sig: typ.Type.(*types.Signature),
body: t.Body,
}
}
}
}
return nil
}
func (c *completer) expectedCompositeLiteralType() types.Type {
clInfo := c.enclosingCompositeLiteral
switch t := clInfo.clType.(type) {
case *types.Slice:
if clInfo.inKey {
return types.Typ[types.UntypedInt]
}
return t.Elem()
case *types.Array:
if clInfo.inKey {
return types.Typ[types.UntypedInt]
}
return t.Elem()
case *types.Map:
if clInfo.inKey {
return t.Key()
}
return t.Elem()
case *types.Struct:
// If we are completing a key (i.e. field name), there is no expected type.
if clInfo.inKey {
return nil
}
// If we are in a key-value pair, but not in the key, then we must be on the
// value side. The expected type of the value will be determined from the key.
if clInfo.kv != nil {
if key, ok := clInfo.kv.Key.(*ast.Ident); ok {
for i := 0; i < t.NumFields(); i++ {
if field := t.Field(i); field.Name() == key.Name {
return field.Type()
}
}
}
} else {
// If we aren't in a key-value pair and aren't in the key, we must be using
// implicit field names.
// The order of the literal fields must match the order in the struct definition.
// Find the element that the position belongs to and suggest that field's type.
if i := exprAtPos(c.pos, clInfo.cl.Elts); i < t.NumFields() {
return t.Field(i).Type()
}
}
}
return nil
}
// typeMod represents an operator that changes the expected type.
type typeMod struct {
mod typeModKind
arrayLen int64
}
type typeModKind int
const (
dereference typeModKind = iota // pointer indirection: "*"
reference // adds level of pointer: "&" for values, "*" for type names
chanRead // channel read operator: "<-"
sliceType // make a slice type: "[]" in "[]int"
arrayType // make an array type: "[2]" in "[2]int"
invoke // make a function call: "()" in "foo()"
takeSlice // take slice of array: "[:]" in "foo[:]"
takeDotDotDot // turn slice into variadic args: "..." in "foo..."
index // index into slice/array: "[0]" in "foo[0]"
)
type objKind int
const (
kindAny objKind = 0
kindArray objKind = 1 << iota
kindSlice
kindChan
kindMap
kindStruct
kindString
kindInt
kindBool
kindBytes
kindPtr
kindInterface
kindFloat
kindComplex
kindError
kindStringer
kindFunc
kindRange0Func
kindRange1Func
kindRange2Func
)
// penalizedObj represents an object that should be disfavored as a
// completion candidate.
type penalizedObj struct {
// objChain is the full "chain", e.g. "foo.bar().baz" becomes
// []types.Object{foo, bar, baz}.
objChain []types.Object
// penalty is score penalty in the range (0, 1).
penalty float64
}
// candidateInference holds information we have inferred about a type that can be
// used at the current position.
type candidateInference struct {
// objType is the desired type of an object used at the query position.
objType types.Type
// objKind is a mask of expected kinds of types such as "map", "slice", etc.
objKind objKind
// variadic is true if we are completing the initial variadic
// parameter. For example:
// append([]T{}, <>) // objType=T variadic=true
// append([]T{}, T{}, <>) // objType=T variadic=false
variadic bool
// modifiers are prefixes such as "*", "&" or "<-" that influence how
// a candidate type relates to the expected type.
modifiers []typeMod
// convertibleTo is a type our candidate type must be convertible to.
convertibleTo types.Type
// typeName holds information about the expected type name at
// position, if any.
typeName typeNameInference
// assignees are the types that would receive a function call's
// results at the position. For example:
//
// foo := 123
// foo, bar := <>
//
// at "<>", the assignees are [int, <invalid>].
assignees []types.Type
// variadicAssignees is true if we could be completing an inner
// function call that fills out an outer function call's variadic
// params. For example:
//
// func foo(int, ...string) {}
//
// foo(<>) // variadicAssignees=true
// foo(bar<>) // variadicAssignees=true
// foo(bar, baz<>) // variadicAssignees=false
variadicAssignees bool
// penalized holds expressions that should be disfavored as
// candidates. For example, it tracks expressions already used in a
// switch statement's other cases. Each expression is tracked using
// its entire object "chain" allowing differentiation between
// "a.foo" and "b.foo" when "a" and "b" are the same type.
penalized []penalizedObj
// objChain contains the chain of objects representing the
// surrounding *ast.SelectorExpr. For example, if we are completing
// "foo.bar.ba<>", objChain will contain []types.Object{foo, bar}.
objChain []types.Object
}
// typeNameInference holds information about the expected type name at
// position.
type typeNameInference struct {
// wantTypeName is true if we expect the name of a type.
wantTypeName bool
// modifiers are prefixes such as "*", "&" or "<-" that influence how
// a candidate type relates to the expected type.
modifiers []typeMod
// assertableFrom is a type that must be assertable to our candidate type.
assertableFrom types.Type
// wantComparable is true if we want a comparable type.
wantComparable bool
// seenTypeSwitchCases tracks types that have already been used by
// the containing type switch.
seenTypeSwitchCases []types.Type
// compLitType is true if we are completing a composite literal type
// name, e.g "foo<>{}".
compLitType bool
// isTypeParam is true if we are completing a type instantiation parameter
isTypeParam bool
}
// expectedCandidate returns information about the expected candidate
// for an expression at the query position.
func expectedCandidate(ctx context.Context, c *completer) (inf candidateInference) {
inf.typeName = expectTypeName(c)
if c.enclosingCompositeLiteral != nil {
inf.objType = c.expectedCompositeLiteralType()
}
Nodes:
for i, node := range c.path {
switch node := node.(type) {
case *ast.BinaryExpr:
// Determine if query position comes from left or right of op.
e := node.X
if c.pos < node.OpPos {
e = node.Y
}
if tv, ok := c.pkg.TypesInfo().Types[e]; ok {
switch node.Op {
case token.LAND, token.LOR:
// Don't infer "bool" type for "&&" or "||". Often you want
// to compose a boolean expression from non-boolean
// candidates.
default:
inf.objType = tv.Type
}
break Nodes
}
case *ast.AssignStmt:
// Only rank completions if you are on the right side of the token.
if c.pos > node.TokPos {
i := exprAtPos(c.pos, node.Rhs)
if i >= len(node.Lhs) {
i = len(node.Lhs) - 1
}
if tv, ok := c.pkg.TypesInfo().Types[node.Lhs[i]]; ok {
inf.objType = tv.Type
}
// If we have a single expression on the RHS, record the LHS
// assignees so we can favor multi-return function calls with
// matching result values.
if len(node.Rhs) <= 1 {
for _, lhs := range node.Lhs {
inf.assignees = append(inf.assignees, c.pkg.TypesInfo().TypeOf(lhs))
}
} else {
// Otherwise, record our single assignee, even if its type is
// not available. We use this info to downrank functions
// with the wrong number of result values.
inf.assignees = append(inf.assignees, c.pkg.TypesInfo().TypeOf(node.Lhs[i]))
}
}
return inf
case *ast.ValueSpec:
if node.Type != nil && c.pos > node.Type.End() {
inf.objType = c.pkg.TypesInfo().TypeOf(node.Type)
}
return inf
case *ast.CallExpr:
// Only consider CallExpr args if position falls between parens.
if node.Lparen < c.pos && c.pos <= node.Rparen {
// For type conversions like "int64(foo)" we can only infer our
// desired type is convertible to int64.
if typ := typeConversion(node, c.pkg.TypesInfo()); typ != nil {
inf.convertibleTo = typ
break Nodes
}
sig, _ := c.pkg.TypesInfo().Types[node.Fun].Type.(*types.Signature)
if sig != nil && sig.TypeParams().Len() > 0 {
// If we are completing a generic func call, re-check the call expression.
// This allows type param inference to work in cases like:
//
// func foo[T any](T) {}
// foo[int](<>) // <- get "int" completions instead of "T"
//
// TODO: remove this after https://go.dev/issue/52503
info := &types.Info{Types: make(map[ast.Expr]types.TypeAndValue)}
types.CheckExpr(c.pkg.FileSet(), c.pkg.Types(), node.Fun.Pos(), node.Fun, info)
sig, _ = info.Types[node.Fun].Type.(*types.Signature)
}
if sig != nil {
inf = c.expectedCallParamType(inf, node, sig)
}
if funIdent, ok := node.Fun.(*ast.Ident); ok {
obj := c.pkg.TypesInfo().ObjectOf(funIdent)
if obj != nil && obj.Parent() == types.Universe {
// Defer call to builtinArgType so we can provide it the
// inferred type from its parent node.
defer func() {
inf = c.builtinArgType(obj, node, inf)
inf.objKind = c.builtinArgKind(ctx, obj, node)
}()
// The expected type of builtin arguments like append() is
// the expected type of the builtin call itself. For
// example:
//
// var foo []int = append(<>)
//
// To find the expected type at <> we "skip" the append()
// node and get the expected type one level up, which is
// []int.
continue Nodes
}
}
return inf
}
case *ast.ReturnStmt:
if c.enclosingFunc != nil {
sig := c.enclosingFunc.sig
// Find signature result that corresponds to our return statement.
if resultIdx := exprAtPos(c.pos, node.Results); resultIdx < len(node.Results) {
if resultIdx < sig.Results().Len() {
inf.objType = sig.Results().At(resultIdx).Type()
}
}
}
return inf
case *ast.CaseClause:
if swtch, ok := findSwitchStmt(c.path[i+1:], c.pos, node).(*ast.SwitchStmt); ok {
if tv, ok := c.pkg.TypesInfo().Types[swtch.Tag]; ok {
inf.objType = tv.Type
// Record which objects have already been used in the case
// statements so we don't suggest them again.
for _, cc := range swtch.Body.List {
for _, caseExpr := range cc.(*ast.CaseClause).List {
// Don't record the expression we are currently completing.
if caseExpr.Pos() < c.pos && c.pos <= caseExpr.End() {
continue
}
if objs := objChain(c.pkg.TypesInfo(), caseExpr); len(objs) > 0 {
inf.penalized = append(inf.penalized, penalizedObj{objChain: objs, penalty: 0.1})
}
}
}
}
}
return inf
case *ast.SliceExpr:
// Make sure position falls within the brackets (e.g. "foo[a:<>]").
if node.Lbrack < c.pos && c.pos <= node.Rbrack {
inf.objType = types.Typ[types.UntypedInt]
}
return inf
case *ast.IndexExpr:
// Make sure position falls within the brackets (e.g. "foo[<>]").
if node.Lbrack < c.pos && c.pos <= node.Rbrack {
if tv, ok := c.pkg.TypesInfo().Types[node.X]; ok {
switch t := tv.Type.Underlying().(type) {
case *types.Map:
inf.objType = t.Key()
case *types.Slice, *types.Array:
inf.objType = types.Typ[types.UntypedInt]
}
if ct := expectedConstraint(tv.Type, 0); ct != nil {
inf.objType = ct
inf.typeName.wantTypeName = true
inf.typeName.isTypeParam = true
}
}
}
return inf
case *ast.IndexListExpr:
if node.Lbrack < c.pos && c.pos <= node.Rbrack {
if tv, ok := c.pkg.TypesInfo().Types[node.X]; ok {
if ct := expectedConstraint(tv.Type, exprAtPos(c.pos, node.Indices)); ct != nil {
inf.objType = ct
inf.typeName.wantTypeName = true
inf.typeName.isTypeParam = true
}
}
}
return inf
case *ast.SendStmt:
// Make sure we are on right side of arrow (e.g. "foo <- <>").
if c.pos > node.Arrow+1 {
if tv, ok := c.pkg.TypesInfo().Types[node.Chan]; ok {
if ch, ok := tv.Type.Underlying().(*types.Chan); ok {
inf.objType = ch.Elem()
}
}
}
return inf
case *ast.RangeStmt:
if goplsastutil.NodeContains(node.X, c.pos) {
inf.objKind |= kindSlice | kindArray | kindMap | kindString
if node.Key == nil && node.Value == nil {
inf.objKind |= kindRange0Func | kindRange1Func | kindRange2Func
} else if node.Value == nil {
inf.objKind |= kindChan | kindRange1Func | kindRange2Func
} else {
inf.objKind |= kindRange2Func
}
}
return inf
case *ast.StarExpr:
inf.modifiers = append(inf.modifiers, typeMod{mod: dereference})
case *ast.UnaryExpr:
switch node.Op {
case token.AND:
inf.modifiers = append(inf.modifiers, typeMod{mod: reference})
case token.ARROW:
inf.modifiers = append(inf.modifiers, typeMod{mod: chanRead})
}
case *ast.DeferStmt, *ast.GoStmt:
inf.objKind |= kindFunc
return inf
default:
if breaksExpectedTypeInference(node, c.pos) {
return inf
}
}
}
return inf
}
func (c *completer) expectedCallParamType(inf candidateInference, node *ast.CallExpr, sig *types.Signature) candidateInference {
numParams := sig.Params().Len()
if numParams == 0 {
return inf
}
exprIdx := exprAtPos(c.pos, node.Args)
// If we have one or zero arg expressions, we may be
// completing to a function call that returns multiple
// values, in turn getting passed in to the surrounding
// call. Record the assignees so we can favor function
// calls that return matching values.
if len(node.Args) <= 1 && exprIdx == 0 {
for i := 0; i < sig.Params().Len(); i++ {
inf.assignees = append(inf.assignees, sig.Params().At(i).Type())
}
// Record that we may be completing into variadic parameters.
inf.variadicAssignees = sig.Variadic()
}
// Make sure not to run past the end of expected parameters.
if exprIdx >= numParams {
inf.objType = sig.Params().At(numParams - 1).Type()
} else {
inf.objType = sig.Params().At(exprIdx).Type()
}
if sig.Variadic() && exprIdx >= (numParams-1) {
// If we are completing a variadic param, deslice the variadic type.
inf.objType = deslice(inf.objType)
// Record whether we are completing the initial variadic param.
inf.variadic = exprIdx == numParams-1 && len(node.Args) <= numParams
// Check if we can infer object kind from printf verb.
inf.objKind |= printfArgKind(c.pkg.TypesInfo(), node, exprIdx)
}
// If our expected type is an uninstantiated generic type param,
// swap to the constraint which will do a decent job filtering
// candidates.
if tp, _ := inf.objType.(*types.TypeParam); tp != nil {
inf.objType = tp.Constraint()
}
return inf
}
func expectedConstraint(t types.Type, idx int) types.Type {
var tp *types.TypeParamList
if named, _ := t.(*types.Named); named != nil {
tp = named.TypeParams()
} else if sig, _ := t.Underlying().(*types.Signature); sig != nil {
tp = sig.TypeParams()
}
if tp == nil || idx >= tp.Len() {
return nil
}
return tp.At(idx).Constraint()
}
// objChain decomposes e into a chain of objects if possible. For
// example, "foo.bar().baz" will yield []types.Object{foo, bar, baz}.
// If any part can't be turned into an object, return nil.
func objChain(info *types.Info, e ast.Expr) []types.Object {
var objs []types.Object
for e != nil {
switch n := e.(type) {
case *ast.Ident:
obj := info.ObjectOf(n)
if obj == nil {
return nil
}
objs = append(objs, obj)
e = nil
case *ast.SelectorExpr:
obj := info.ObjectOf(n.Sel)
if obj == nil {
return nil
}
objs = append(objs, obj)
e = n.X
case *ast.CallExpr:
if len(n.Args) > 0 {
return nil
}
e = n.Fun
default:
return nil
}
}
// Reverse order so the layout matches the syntactic order.
for i := 0; i < len(objs)/2; i++ {
objs[i], objs[len(objs)-1-i] = objs[len(objs)-1-i], objs[i]
}
return objs
}
// applyTypeModifiers applies the list of type modifiers to a type.
// It returns nil if the modifiers could not be applied.
func (ci candidateInference) applyTypeModifiers(typ types.Type, addressable bool) types.Type {
for _, mod := range ci.modifiers {
switch mod.mod {
case dereference:
// For every "*" indirection operator, remove a pointer layer
// from candidate type.
if ptr, ok := typ.Underlying().(*types.Pointer); ok {
typ = ptr.Elem()
} else {
return nil
}
case reference:
// For every "&" address operator, add another pointer layer to
// candidate type, if the candidate is addressable.
if addressable {
typ = types.NewPointer(typ)
} else {
return nil
}
case chanRead:
// For every "<-" operator, remove a layer of channelness.
if ch, ok := typ.(*types.Chan); ok {
typ = ch.Elem()
} else {
return nil
}
}
}
return typ
}
// applyTypeNameModifiers applies the list of type modifiers to a type name.
func (ci candidateInference) applyTypeNameModifiers(typ types.Type) types.Type {
for _, mod := range ci.typeName.modifiers {
switch mod.mod {
case reference:
typ = types.NewPointer(typ)
case arrayType:
typ = types.NewArray(typ, mod.arrayLen)
case sliceType:
typ = types.NewSlice(typ)
}
}
return typ
}
// matchesVariadic returns true if we are completing a variadic
// parameter and candType is a compatible slice type.
func (ci candidateInference) matchesVariadic(candType types.Type) bool {
return ci.variadic && ci.objType != nil && assignableTo(candType, types.NewSlice(ci.objType))
}
// findSwitchStmt returns an *ast.CaseClause's corresponding *ast.SwitchStmt or
// *ast.TypeSwitchStmt. path should start from the case clause's first ancestor.
func findSwitchStmt(path []ast.Node, pos token.Pos, c *ast.CaseClause) ast.Stmt {
// Make sure position falls within a "case <>:" clause.
if exprAtPos(pos, c.List) >= len(c.List) {
return nil
}
// A case clause is always nested within a block statement in a switch statement.
if len(path) < 2 {
return nil
}
if _, ok := path[0].(*ast.BlockStmt); !ok {
return nil
}
switch s := path[1].(type) {
case *ast.SwitchStmt:
return s
case *ast.TypeSwitchStmt:
return s
default:
return nil
}
}
// breaksExpectedTypeInference reports if an expression node's type is unrelated
// to its child expression node types. For example, "Foo{Bar: x.Baz(<>)}" should
// expect a function argument, not a composite literal value.
func breaksExpectedTypeInference(n ast.Node, pos token.Pos) bool {
switch n := n.(type) {
case *ast.CompositeLit:
// Doesn't break inference if pos is in type name.
// For example: "Foo<>{Bar: 123}"
return n.Type == nil || !goplsastutil.NodeContains(n.Type, pos)
case *ast.CallExpr:
// Doesn't break inference if pos is in func name.
// For example: "Foo<>(123)"
return !goplsastutil.NodeContains(n.Fun, pos)
case *ast.FuncLit, *ast.IndexExpr, *ast.SliceExpr:
return true
default:
return false
}
}
// expectTypeName returns information about the expected type name at position.
func expectTypeName(c *completer) typeNameInference {
var inf typeNameInference
Nodes:
for i, p := range c.path {
switch n := p.(type) {
case *ast.FieldList:
// Expect a type name if pos is in a FieldList. This applies to
// FuncType params/results, FuncDecl receiver, StructType, and
// InterfaceType. We don't need to worry about the field name
// because completion bails out early if pos is in an *ast.Ident
// that defines an object.
inf.wantTypeName = true
break Nodes
case *ast.CaseClause:
// Expect type names in type switch case clauses.
if swtch, ok := findSwitchStmt(c.path[i+1:], c.pos, n).(*ast.TypeSwitchStmt); ok {
// The case clause types must be assertable from the type switch parameter.
ast.Inspect(swtch.Assign, func(n ast.Node) bool {
if ta, ok := n.(*ast.TypeAssertExpr); ok {
inf.assertableFrom = c.pkg.TypesInfo().TypeOf(ta.X)
return false
}
return true
})
inf.wantTypeName = true
// Track the types that have already been used in this
// switch's case statements so we don't recommend them.
for _, e := range swtch.Body.List {
for _, typeExpr := range e.(*ast.CaseClause).List {
// Skip if type expression contains pos. We don't want to
// count it as already used if the user is completing it.
if typeExpr.Pos() < c.pos && c.pos <= typeExpr.End() {
continue
}
if t := c.pkg.TypesInfo().TypeOf(typeExpr); t != nil {
inf.seenTypeSwitchCases = append(inf.seenTypeSwitchCases, t)
}
}
}
break Nodes
}
return typeNameInference{}
case *ast.TypeAssertExpr:
// Expect type names in type assert expressions.
if n.Lparen < c.pos && c.pos <= n.Rparen {
// The type in parens must be assertable from the expression type.
inf.assertableFrom = c.pkg.TypesInfo().TypeOf(n.X)
inf.wantTypeName = true
break Nodes
}
return typeNameInference{}
case *ast.StarExpr:
inf.modifiers = append(inf.modifiers, typeMod{mod: reference})
case *ast.CompositeLit:
// We want a type name if position is in the "Type" part of a
// composite literal (e.g. "Foo<>{}").
if n.Type != nil && n.Type.Pos() <= c.pos && c.pos <= n.Type.End() {
inf.wantTypeName = true
inf.compLitType = true
if i < len(c.path)-1 {
// Track preceding "&" operator. Technically it applies to
// the composite literal and not the type name, but if
// affects our type completion nonetheless.
if u, ok := c.path[i+1].(*ast.UnaryExpr); ok && u.Op == token.AND {
inf.modifiers = append(inf.modifiers, typeMod{mod: reference})
}
}
}
break Nodes
case *ast.ArrayType:
// If we are inside the "Elt" part of an array type, we want a type name.
if n.Elt.Pos() <= c.pos && c.pos <= n.Elt.End() {
inf.wantTypeName = true
if n.Len == nil {
// No "Len" expression means a slice type.
inf.modifiers = append(inf.modifiers, typeMod{mod: sliceType})
} else {
// Try to get the array type using the constant value of "Len".
tv, ok := c.pkg.TypesInfo().Types[n.Len]
if ok && tv.Value != nil && tv.Value.Kind() == constant.Int {
if arrayLen, ok := constant.Int64Val(tv.Value); ok {
inf.modifiers = append(inf.modifiers, typeMod{mod: arrayType, arrayLen: arrayLen})
}
}
}
// ArrayTypes can be nested, so keep going if our parent is an
// ArrayType.
if i < len(c.path)-1 {
if _, ok := c.path[i+1].(*ast.ArrayType); ok {
continue Nodes
}
}
break Nodes
}
case *ast.MapType:
inf.wantTypeName = true
if n.Key != nil {
inf.wantComparable = goplsastutil.NodeContains(n.Key, c.pos)
} else {
// If the key is empty, assume we are completing the key if
// pos is directly after the "map[".
inf.wantComparable = c.pos == n.Pos()+token.Pos(len("map["))
}
break Nodes
case *ast.ValueSpec:
inf.wantTypeName = n.Type != nil && goplsastutil.NodeContains(n.Type, c.pos)
break Nodes
case *ast.TypeSpec:
inf.wantTypeName = goplsastutil.NodeContains(n.Type, c.pos)
default:
if breaksExpectedTypeInference(p, c.pos) {
return typeNameInference{}
}
}
}
return inf
}
func (c *completer) fakeObj(T types.Type) *types.Var {
return types.NewVar(token.NoPos, c.pkg.Types(), "", T)
}
// derivableTypes iterates types you can derive from t. For example,
// from "foo" we might derive "&foo", and "foo()".
func derivableTypes(t types.Type, addressable bool, f func(t types.Type, addressable bool, mod typeModKind) bool) bool {
switch t := t.Underlying().(type) {
case *types.Signature:
// If t is a func type with a single result, offer the result type.
if t.Results().Len() == 1 && f(t.Results().At(0).Type(), false, invoke) {
return true
}
case *types.Array:
if f(t.Elem(), true, index) {
return true
}
// Try converting array to slice.
if f(types.NewSlice(t.Elem()), false, takeSlice) {
return true
}
case *types.Pointer:
if f(t.Elem(), false, dereference) {
return true
}
case *types.Slice:
if f(t.Elem(), true, index) {
return true
}
case *types.Map:
if f(t.Elem(), false, index) {
return true
}
case *types.Chan:
if f(t.Elem(), false, chanRead) {
return true
}
}
// Check if c is addressable and a pointer to c matches our type inference.
if addressable && f(types.NewPointer(t), false, reference) {
return true
}
return false
}
// anyCandType reports whether f returns true for any candidate type
// derivable from c. It searches up to three levels of type
// modification. For example, given "foo" we could discover "***foo"
// or "*foo()".
func (c *candidate) anyCandType(f func(t types.Type, addressable bool) bool) bool {
if c.obj == nil || c.obj.Type() == nil {
return false
}
const maxDepth = 3
var searchTypes func(t types.Type, addressable bool, mods []typeModKind) bool
searchTypes = func(t types.Type, addressable bool, mods []typeModKind) bool {
if f(t, addressable) {
if len(mods) > 0 {
newMods := make([]typeModKind, len(mods)+len(c.mods))
copy(newMods, mods)
copy(newMods[len(mods):], c.mods)
c.mods = newMods
}
return true
}
if len(mods) == maxDepth {
return false
}
return derivableTypes(t, addressable, func(t types.Type, addressable bool, mod typeModKind) bool {
return searchTypes(t, addressable, append(mods, mod))
})
}
return searchTypes(c.obj.Type(), c.addressable, make([]typeModKind, 0, maxDepth))
}
// matchingCandidate reports whether cand matches our type inferences.
// It mutates cand's score in certain cases.
func (c *completer) matchingCandidate(cand *candidate) bool {
if c.completionContext.commentCompletion {
return false
}
// Bail out early if we are completing a field name in a composite literal.
if v, ok := cand.obj.(*types.Var); ok && v.IsField() && c.wantStructFieldCompletions() {
return true
}
if isTypeName(cand.obj) {
return c.matchingTypeName(cand)
} else if c.wantTypeName() {
// If we want a type, a non-type object never matches.
return false
}
if c.inference.candTypeMatches(cand) {
return true
}
candType := cand.obj.Type()
if candType == nil {
return false
}
if sig, ok := candType.Underlying().(*types.Signature); ok {
if c.inference.assigneesMatch(cand, sig) {
// Invoke the candidate if its results are multi-assignable.
cand.mods = append(cand.mods, invoke)
return true
}
}
// Default to invoking *types.Func candidates. This is so function
// completions in an empty statement (or other cases with no expected type)
// are invoked by default.
if isFunc(cand.obj) {
cand.mods = append(cand.mods, invoke)
}
return false
}
// candTypeMatches reports whether cand makes a good completion
// candidate given the candidate inference. cand's score may be
// mutated to downrank the candidate in certain situations.
func (ci *candidateInference) candTypeMatches(cand *candidate) bool {
var (
expTypes = make([]types.Type, 0, 2)
variadicType types.Type
)
if ci.objType != nil {
expTypes = append(expTypes, ci.objType)
if ci.variadic {
variadicType = types.NewSlice(ci.objType)
expTypes = append(expTypes, variadicType)
}
}
return cand.anyCandType(func(candType types.Type, addressable bool) bool {
// Take into account any type modifiers on the expected type.
candType = ci.applyTypeModifiers(candType, addressable)
if candType == nil {
return false
}
if ci.convertibleTo != nil && convertibleTo(candType, ci.convertibleTo) {
return true
}
for _, expType := range expTypes {
if isEmptyInterface(expType) {
// If any type matches the expected type, fall back to other
// considerations below.
//
// TODO(rfindley): can this be expressed via scoring, rather than a boolean?
// Why is it the case that we break ties for the empty interface, but
// not for other expected types that may be satisfied by a lot of
// types, such as fmt.Stringer?
continue
}
matches := ci.typeMatches(expType, candType)
if !matches {
// If candType doesn't otherwise match, consider if we can
// convert candType directly to expType.
if considerTypeConversion(candType, expType, cand.path) {
cand.convertTo = expType
// Give a major score penalty so we always prefer directly
// assignable candidates, all else equal.
cand.score *= 0.5
return true
}
continue
}
if expType == variadicType {
cand.mods = append(cand.mods, takeDotDotDot)
}
// Lower candidate score for untyped conversions. This avoids
// ranking untyped constants above candidates with an exact type
// match. Don't lower score of builtin constants, e.g. "true".
if isUntyped(candType) && !types.Identical(candType, expType) && cand.obj.Parent() != types.Universe {
// Bigger penalty for deep completions into other packages to
// avoid random constants from other packages popping up all
// the time.
if len(cand.path) > 0 && isPkgName(cand.path[0]) {
cand.score *= 0.5
} else {
cand.score *= 0.75
}
}
return true
}
// If we don't have a specific expected type, fall back to coarser
// object kind checks.
if ci.objType == nil || isEmptyInterface(ci.objType) {
// If we were able to apply type modifiers to our candidate type,
// count that as a match. For example:
//
// var foo chan int
// <-fo<>
//
// We were able to apply the "<-" type modifier to "foo", so "foo"
// matches.
if len(ci.modifiers) > 0 {
return true
}
// If we didn't have an exact type match, check if our object kind
// matches.
if ci.kindMatches(candType) {
if ci.objKind == kindFunc {
cand.mods = append(cand.mods, invoke)
}
return true
}
}
return false
})
}
// considerTypeConversion returns true if we should offer a completion
// automatically converting "from" to "to".
func considerTypeConversion(from, to types.Type, path []types.Object) bool {
// Don't offer to convert deep completions from other packages.
// Otherwise there are many random package level consts/vars that
// pop up as candidates all the time.
if len(path) > 0 && isPkgName(path[0]) {
return false
}
if _, ok := from.(*types.TypeParam); ok {
return false
}
if !convertibleTo(from, to) {
return false
}
// Don't offer to convert ints to strings since that probably
// doesn't do what the user wants.
if isBasicKind(from, types.IsInteger) && isBasicKind(to, types.IsString) {
return false
}
return true
}
// typeMatches reports whether an object of candType makes a good
// completion candidate given the expected type expType.
func (ci *candidateInference) typeMatches(expType, candType types.Type) bool {
// Handle untyped values specially since AssignableTo gives false negatives
// for them (see https://golang.org/issue/32146).
if candBasic, ok := candType.Underlying().(*types.Basic); ok {
if expBasic, ok := expType.Underlying().(*types.Basic); ok {
// Note that the candidate and/or the expected can be untyped.
// In "fo<> == 100" the expected type is untyped, and the
// candidate could also be an untyped constant.
// Sort by is_untyped and then by is_int to simplify below logic.
a, b := candBasic.Info(), expBasic.Info()
if a&types.IsUntyped == 0 || (b&types.IsInteger > 0 && b&types.IsUntyped > 0) {
a, b = b, a
}
// If at least one is untyped...
if a&types.IsUntyped > 0 {
switch {
// Untyped integers are compatible with floats.
case a&types.IsInteger > 0 && b&types.IsFloat > 0:
return true
// Check if their constant kind (bool|int|float|complex|string) matches.
// This doesn't take into account the constant value, so there will be some
// false positives due to integer sign and overflow.
case a&types.IsConstType == b&types.IsConstType:
return true
}
}
}
}
// AssignableTo covers the case where the types are equal, but also handles
// cases like assigning a concrete type to an interface type.
return assignableTo(candType, expType)
}
// kindMatches reports whether candType's kind matches our expected
// kind (e.g. slice, map, etc.).
func (ci *candidateInference) kindMatches(candType types.Type) bool {
return ci.objKind > 0 && ci.objKind&candKind(candType) > 0
}
// assigneesMatch reports whether an invocation of sig matches the
// number and type of any assignees.
func (ci *candidateInference) assigneesMatch(cand *candidate, sig *types.Signature) bool {
if len(ci.assignees) == 0 {
return false
}
// Uniresult functions are always usable and are handled by the
// normal, non-assignees type matching logic.
if sig.Results().Len() == 1 {
return false
}
// Don't prefer completing into func(...interface{}) calls since all
// functions would match.
if ci.variadicAssignees && len(ci.assignees) == 1 && isEmptyInterface(deslice(ci.assignees[0])) {
return false
}
var numberOfResultsCouldMatch bool
if ci.variadicAssignees {
numberOfResultsCouldMatch = sig.Results().Len() >= len(ci.assignees)-1
} else {
numberOfResultsCouldMatch = sig.Results().Len() == len(ci.assignees)
}
// If our signature doesn't return the right number of values, it's
// not a match, so downrank it. For example:
//
// var foo func() (int, int)
// a, b, c := <> // downrank "foo()" since it only returns two values
if !numberOfResultsCouldMatch {
cand.score /= 2
return false
}
// If at least one assignee has a valid type, and all valid
// assignees match the corresponding sig result value, the signature
// is a match.
allMatch := false
for i := 0; i < sig.Results().Len(); i++ {
var assignee types.Type
// If we are completing into variadic parameters, deslice the
// expected variadic type.
if ci.variadicAssignees && i >= len(ci.assignees)-1 {
assignee = ci.assignees[len(ci.assignees)-1]
if elem := deslice(assignee); elem != nil {
assignee = elem
}
} else {
assignee = ci.assignees[i]
}
if assignee == nil || assignee == types.Typ[types.Invalid] {
continue
}
allMatch = ci.typeMatches(assignee, sig.Results().At(i).Type())
if !allMatch {
break
}
}
return allMatch
}
func (c *completer) matchingTypeName(cand *candidate) bool {
if !c.wantTypeName() {
return false
}
typeMatches := func(candType types.Type) bool {
// Take into account any type name modifier prefixes.
candType = c.inference.applyTypeNameModifiers(candType)
if from := c.inference.typeName.assertableFrom; from != nil {
// Don't suggest the starting type in type assertions. For example,
// if "foo" is an io.Writer, don't suggest "foo.(io.Writer)".
if types.Identical(from, candType) {
return false
}
if intf, ok := from.Underlying().(*types.Interface); ok {
if !types.AssertableTo(intf, candType) {
return false
}
}
}
if c.inference.typeName.wantComparable && !types.Comparable(candType) {
return false
}
// Skip this type if it has already been used in another type
// switch case.
for _, seen := range c.inference.typeName.seenTypeSwitchCases {
if types.Identical(candType, seen) {
return false
}
}
// We can expect a type name and have an expected type in cases like:
//
// var foo []int
// foo = []i<>
//
// Where our expected type is "[]int", and we expect a type name.
if c.inference.objType != nil {
return assignableTo(candType, c.inference.objType)
}
// Default to saying any type name is a match.
return true
}
t := cand.obj.Type()
if typeMatches(t) {
return true
}
if !types.IsInterface(t) && typeMatches(types.NewPointer(t)) {
if c.inference.typeName.compLitType {
// If we are completing a composite literal type as in
// "foo<>{}", to make a pointer we must prepend "&".
cand.mods = append(cand.mods, reference)
} else {
// If we are completing a normal type name such as "foo<>", to
// make a pointer we must prepend "*".
cand.mods = append(cand.mods, dereference)
}
return true
}
return false
}
var (
// "interface { Error() string }" (i.e. error)
errorIntf = types.Universe.Lookup("error").Type().Underlying().(*types.Interface)
// "interface { String() string }" (i.e. fmt.Stringer)
stringerIntf = types.NewInterfaceType([]*types.Func{
types.NewFunc(token.NoPos, nil, "String", types.NewSignatureType(
nil, nil,
nil, nil,
types.NewTuple(types.NewParam(token.NoPos, nil, "", types.Typ[types.String])),
false,
)),
}, nil).Complete()
byteType = types.Universe.Lookup("byte").Type()
boolType = types.Universe.Lookup("bool").Type()
)
// candKind returns the objKind of candType, if any.
func candKind(candType types.Type) objKind {
var kind objKind
switch t := candType.Underlying().(type) {
case *types.Array:
kind |= kindArray
if t.Elem() == byteType {
kind |= kindBytes
}
case *types.Slice:
kind |= kindSlice
if t.Elem() == byteType {
kind |= kindBytes
}
case *types.Chan:
kind |= kindChan
case *types.Map:
kind |= kindMap
case *types.Pointer:
kind |= kindPtr
// Some builtins handle array pointers as arrays, so just report a pointer
// to an array as an array.
if _, isArray := t.Elem().Underlying().(*types.Array); isArray {
kind |= kindArray
}
case *types.Interface:
kind |= kindInterface
case *types.Basic:
switch info := t.Info(); {
case info&types.IsString > 0:
kind |= kindString
case info&types.IsInteger > 0:
kind |= kindInt
case info&types.IsFloat > 0:
kind |= kindFloat
case info&types.IsComplex > 0:
kind |= kindComplex
case info&types.IsBoolean > 0:
kind |= kindBool
}
case *types.Signature:
kind |= kindFunc
switch rangeFuncParamCount(t) {
case 0:
kind |= kindRange0Func
case 1:
kind |= kindRange1Func
case 2:
kind |= kindRange2Func
}
}
if types.Implements(candType, errorIntf) {
kind |= kindError
}
if types.Implements(candType, stringerIntf) {
kind |= kindStringer
}
return kind
}
// If sig looks like a range func, return param count, else return -1.
func rangeFuncParamCount(sig *types.Signature) int {
if sig.Results().Len() != 0 || sig.Params().Len() != 1 {
return -1
}
yieldSig, _ := sig.Params().At(0).Type().Underlying().(*types.Signature)
if yieldSig == nil {
return -1
}
if yieldSig.Results().Len() != 1 || yieldSig.Results().At(0).Type() != boolType {
return -1
}
return yieldSig.Params().Len()
}
// innermostScope returns the innermost scope for c.pos.
func (c *completer) innermostScope() *types.Scope {
for _, s := range c.scopes {
if s != nil {
return s
}
}
return nil
}
// isSlice reports whether the object's underlying type is a slice.
func isSlice(obj types.Object) bool {
if obj != nil && obj.Type() != nil {
if _, ok := obj.Type().Underlying().(*types.Slice); ok {
return true
}
}
return false
}
// forEachPackageMember calls f(tok, id, fn) for each package-level
// TYPE/VAR/CONST/FUNC declaration in the Go source file, based on a
// quick partial parse. fn is non-nil only for function declarations.
// The AST position information is garbage.
func forEachPackageMember(content []byte, f func(tok token.Token, id *ast.Ident, fn *ast.FuncDecl)) {
purged := goplsastutil.PurgeFuncBodies(content)
file, _ := parser.ParseFile(token.NewFileSet(), "", purged, 0)
for _, decl := range file.Decls {
switch decl := decl.(type) {
case *ast.GenDecl:
for _, spec := range decl.Specs {
switch spec := spec.(type) {
case *ast.ValueSpec: // var/const
for _, id := range spec.Names {
f(decl.Tok, id, nil)
}
case *ast.TypeSpec:
f(decl.Tok, spec.Name, nil)
}
}
case *ast.FuncDecl:
if decl.Recv == nil {
f(token.FUNC, decl.Name, decl)
}
}
}
}
func is[T any](x any) bool {
_, ok := x.(T)
return ok
}
|