1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package inline
// This file defines the callee side of the "fallible constant" analysis.
import (
"fmt"
"go/ast"
"go/constant"
"go/format"
"go/token"
"go/types"
"strconv"
"strings"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/internal/aliases"
"golang.org/x/tools/internal/typeparams"
)
// falconResult is the result of the analysis of the callee.
type falconResult struct {
Types []falconType // types for falcon constraint environment
Constraints []string // constraints (Go expressions) on values of fallible constants
}
// A falconType specifies the name and underlying type of a synthetic
// defined type for use in falcon constraints.
//
// Unique types from callee code are bijectively mapped onto falcon
// types so that constraints are independent of callee type
// information but preserve type equivalence classes.
//
// Fresh names are deliberately obscure to avoid shadowing even if a
// callee parameter has a nanme like "int" or "any".
type falconType struct {
Name string
Kind types.BasicKind // string/number/bool
}
// falcon identifies "fallible constant" expressions, which are
// expressions that may fail to compile if one or more of their
// operands is changed from non-constant to constant.
//
// Consider:
//
// func sub(s string, i, j int) string { return s[i:j] }
//
// If parameters are replaced by constants, the compiler is
// required to perform these additional checks:
//
// - if i is constant, 0 <= i.
// - if s and i are constant, i <= len(s).
// - ditto for j.
// - if i and j are constant, i <= j.
//
// s[i:j] is thus a "fallible constant" expression dependent on {s, i,
// j}. Each falcon creates a set of conditional constraints across one
// or more parameter variables.
//
// - When inlining a call such as sub("abc", -1, 2), the parameter i
// cannot be eliminated by substitution as its argument value is
// negative.
//
// - When inlining sub("", 2, 1), all three parameters cannot be
// simultaneously eliminated by substitution without violating i
// <= len(s) and j <= len(s), but the parameters i and j could be
// safely eliminated without s.
//
// Parameters that cannot be eliminated must remain non-constant,
// either in the form of a binding declaration:
//
// { var i int = -1; return "abc"[i:2] }
//
// or a parameter of a literalization:
//
// func (i int) string { return "abc"[i:2] }(-1)
//
// These example expressions are obviously doomed to fail at run
// time, but in realistic cases such expressions are dominated by
// appropriate conditions that make them reachable only when safe:
//
// if 0 <= i && i <= j && j <= len(s) { _ = s[i:j] }
//
// (In principle a more sophisticated inliner could entirely eliminate
// such unreachable blocks based on the condition being always-false
// for the given parameter substitution, but this is tricky to do safely
// because the type-checker considers only a single configuration.
// Consider: if runtime.GOOS == "linux" { ... }.)
//
// We believe this is an exhaustive list of "fallible constant" operations:
//
// - switch z { case x: case y } // duplicate case values
// - s[i], s[i:j], s[i:j:k] // index out of bounds (0 <= i <= j <= k <= len(s))
// - T{x: 0} // index out of bounds, duplicate index
// - x/y, x%y, x/=y, x%=y // integer division by zero; minint/-1 overflow
// - x+y, x-y, x*y // arithmetic overflow
// - x<<y // shift out of range
// - -x // negation of minint
// - T(x) // value out of range
//
// The fundamental reason for this elaborate algorithm is that the
// "separate analysis" of callee and caller, as required when running
// in an environment such as unitchecker, means that there is no way
// for us to simply invoke the type checker on the combination of
// caller and callee code, as by the time we analyze the caller, we no
// longer have access to type information for the callee (and, in
// particular, any of its direct dependencies that are not direct
// dependencies of the caller). So, in effect, we are forced to map
// the problem in a neutral (callee-type-independent) constraint
// system that can be verified later.
func falcon(logf func(string, ...any), fset *token.FileSet, params map[*types.Var]*paramInfo, info *types.Info, decl *ast.FuncDecl) falconResult {
st := &falconState{
logf: logf,
fset: fset,
params: params,
info: info,
decl: decl,
}
// type mapping
st.int = st.typename(types.Typ[types.Int])
st.any = "interface{}" // don't use "any" as it may be shadowed
for obj, info := range st.params {
if isBasic(obj.Type(), types.IsConstType) {
info.FalconType = st.typename(obj.Type())
}
}
st.stmt(st.decl.Body)
return st.result
}
type falconState struct {
// inputs
logf func(string, ...any)
fset *token.FileSet
params map[*types.Var]*paramInfo
info *types.Info
decl *ast.FuncDecl
// working state
int string
any string
typenames typeutil.Map
result falconResult
}
// typename returns the name in the falcon constraint system
// of a given string/number/bool type t. Falcon types are
// specified directly in go/types data structures rather than
// by name, avoiding potential shadowing conflicts with
// confusing parameter names such as "int".
//
// Also, each distinct type (as determined by types.Identical)
// is mapped to a fresh type in the falcon system so that we
// can map the types in the callee code into a neutral form
// that does not depend on imports, allowing us to detect
// potential conflicts such as
//
// map[any]{T1(1): 0, T2(1): 0}
//
// where T1=T2.
func (st *falconState) typename(t types.Type) string {
name, ok := st.typenames.At(t).(string)
if !ok {
basic := t.Underlying().(*types.Basic)
// That dot ۰ is an Arabic zero numeral U+06F0.
// It is very unlikely to appear in a real program.
// TODO(adonovan): use a non-heuristic solution.
name = fmt.Sprintf("%s۰%d", basic, st.typenames.Len())
st.typenames.Set(t, name)
st.logf("falcon: emit type %s %s // %q", name, basic, t)
st.result.Types = append(st.result.Types, falconType{
Name: name,
Kind: basic.Kind(),
})
}
return name
}
// -- constraint emission --
// emit emits a Go expression that must have a legal type.
// In effect, we let the go/types constant folding algorithm
// do most of the heavy lifting (though it may be hard to
// believe from the complexity of this algorithm!).
func (st *falconState) emit(constraint ast.Expr) {
var out strings.Builder
if err := format.Node(&out, st.fset, constraint); err != nil {
panic(err) // can't happen
}
syntax := out.String()
st.logf("falcon: emit constraint %s", syntax)
st.result.Constraints = append(st.result.Constraints, syntax)
}
// emitNonNegative emits an []T{}[index] constraint,
// which ensures index is non-negative if constant.
func (st *falconState) emitNonNegative(index ast.Expr) {
st.emit(&ast.IndexExpr{
X: &ast.CompositeLit{
Type: &ast.ArrayType{
Elt: makeIdent(st.int),
},
},
Index: index,
})
}
// emitMonotonic emits an []T{}[i:j] constraint,
// which ensures i <= j if both are constant.
func (st *falconState) emitMonotonic(i, j ast.Expr) {
st.emit(&ast.SliceExpr{
X: &ast.CompositeLit{
Type: &ast.ArrayType{
Elt: makeIdent(st.int),
},
},
Low: i,
High: j,
})
}
// emitUnique emits a T{elem1: 0, ... elemN: 0} constraint,
// which ensures that all constant elems are unique.
// T may be a map, slice, or array depending
// on the desired check semantics.
func (st *falconState) emitUnique(typ ast.Expr, elems []ast.Expr) {
if len(elems) > 1 {
var elts []ast.Expr
for _, elem := range elems {
elts = append(elts, &ast.KeyValueExpr{
Key: elem,
Value: makeIntLit(0),
})
}
st.emit(&ast.CompositeLit{
Type: typ,
Elts: elts,
})
}
}
// -- traversal --
// The traversal functions scan the callee body for expressions that
// are not constant but would become constant if the parameter vars
// were redeclared as constants, and emits for each one a constraint
// (a Go expression) with the property that it will not type-check
// (using types.CheckExpr) if the particular argument values are
// unsuitable.
//
// These constraints are checked by Inline with the actual
// constant argument values. Violations cause it to reject
// parameters as candidates for substitution.
func (st *falconState) stmt(s ast.Stmt) {
ast.Inspect(s, func(n ast.Node) bool {
switch n := n.(type) {
case ast.Expr:
_ = st.expr(n)
return false // skip usual traversal
case *ast.AssignStmt:
switch n.Tok {
case token.QUO_ASSIGN, token.REM_ASSIGN:
// x /= y
// Possible "integer division by zero"
// Emit constraint: 1/y.
_ = st.expr(n.Lhs[0])
kY := st.expr(n.Rhs[0])
if kY, ok := kY.(ast.Expr); ok {
op := token.QUO
if n.Tok == token.REM_ASSIGN {
op = token.REM
}
st.emit(&ast.BinaryExpr{
Op: op,
X: makeIntLit(1),
Y: kY,
})
}
return false // skip usual traversal
}
case *ast.SwitchStmt:
if n.Init != nil {
st.stmt(n.Init)
}
tBool := types.Type(types.Typ[types.Bool])
tagType := tBool // default: true
if n.Tag != nil {
st.expr(n.Tag)
tagType = st.info.TypeOf(n.Tag)
}
// Possible "duplicate case value".
// Emit constraint map[T]int{v1: 0, ..., vN:0}
// to ensure all maybe-constant case values are unique
// (unless switch tag is boolean, which is relaxed).
var unique []ast.Expr
for _, clause := range n.Body.List {
clause := clause.(*ast.CaseClause)
for _, caseval := range clause.List {
if k := st.expr(caseval); k != nil {
unique = append(unique, st.toExpr(k))
}
}
for _, stmt := range clause.Body {
st.stmt(stmt)
}
}
if unique != nil && !types.Identical(tagType.Underlying(), tBool) {
tname := st.any
if !types.IsInterface(tagType) {
tname = st.typename(tagType)
}
t := &ast.MapType{
Key: makeIdent(tname),
Value: makeIdent(st.int),
}
st.emitUnique(t, unique)
}
}
return true
})
}
// fieldTypes visits the .Type of each field in the list.
func (st *falconState) fieldTypes(fields *ast.FieldList) {
if fields != nil {
for _, field := range fields.List {
_ = st.expr(field.Type)
}
}
}
// expr visits the expression (or type) and returns a
// non-nil result if the expression is constant or would
// become constant if all suitable function parameters were
// redeclared as constants.
//
// If the expression is constant, st.expr returns its type
// and value (types.TypeAndValue). If the expression would
// become constant, st.expr returns an ast.Expr tree whose
// leaves are literals and parameter references, and whose
// interior nodes are operations that may become constant,
// such as -x, x+y, f(x), and T(x). We call these would-be
// constant expressions "fallible constants", since they may
// fail to type-check for some values of x, i, and j. (We
// refer to the non-nil cases collectively as "maybe
// constant", and the nil case as "definitely non-constant".)
//
// As a side effect, st.expr emits constraints for each
// fallible constant expression; this is its main purpose.
//
// Consequently, st.expr must visit the entire subtree so
// that all necessary constraints are emitted. It may not
// short-circuit the traversal when it encounters a constant
// subexpression as constants may contain arbitrary other
// syntax that may impose constraints. Consider (as always)
// this contrived but legal example of a type parameter (!)
// that contains statement syntax:
//
// func f[T [unsafe.Sizeof(func() { stmts })]int]()
//
// There is no need to emit constraints for (e.g.) s[i] when s
// and i are already constants, because we know the expression
// is sound, but it is sometimes easier to emit these
// redundant constraints than to avoid them.
func (st *falconState) expr(e ast.Expr) (res any) { // = types.TypeAndValue | ast.Expr
tv := st.info.Types[e]
if tv.Value != nil {
// A constant value overrides any other result.
defer func() { res = tv }()
}
switch e := e.(type) {
case *ast.Ident:
if v, ok := st.info.Uses[e].(*types.Var); ok {
if _, ok := st.params[v]; ok && isBasic(v.Type(), types.IsConstType) {
return e // reference to constable parameter
}
}
// (References to *types.Const are handled by the defer.)
case *ast.BasicLit:
// constant
case *ast.ParenExpr:
return st.expr(e.X)
case *ast.FuncLit:
_ = st.expr(e.Type)
st.stmt(e.Body)
// definitely non-constant
case *ast.CompositeLit:
// T{k: v, ...}, where T ∈ {array,*array,slice,map},
// imposes a constraint that all constant k are
// distinct and, for arrays [n]T, within range 0-n.
//
// Types matter, not just values. For example,
// an interface-keyed map may contain keys
// that are numerically equal so long as they
// are of distinct types. For example:
//
// type myint int
// map[any]bool{1: true, 1: true} // error: duplicate key
// map[any]bool{1: true, int16(1): true} // ok
// map[any]bool{1: true, myint(1): true} // ok
//
// This can be asserted by emitting a
// constraint of the form T{k1: 0, ..., kN: 0}.
if e.Type != nil {
_ = st.expr(e.Type)
}
t := aliases.Unalias(typeparams.Deref(tv.Type))
var uniques []ast.Expr
for _, elt := range e.Elts {
if kv, ok := elt.(*ast.KeyValueExpr); ok {
if !is[*types.Struct](t) {
if k := st.expr(kv.Key); k != nil {
uniques = append(uniques, st.toExpr(k))
}
}
_ = st.expr(kv.Value)
} else {
_ = st.expr(elt)
}
}
if uniques != nil {
// Inv: not a struct.
// The type T in constraint T{...} depends on the CompLit:
// - for a basic-keyed map, use map[K]int;
// - for an interface-keyed map, use map[any]int;
// - for a slice, use []int;
// - for an array or *array, use [n]int.
// The last two entail progressively stronger index checks.
var ct ast.Expr // type syntax for constraint
switch t := t.(type) {
case *types.Map:
if types.IsInterface(t.Key()) {
ct = &ast.MapType{
Key: makeIdent(st.any),
Value: makeIdent(st.int),
}
} else {
ct = &ast.MapType{
Key: makeIdent(st.typename(t.Key())),
Value: makeIdent(st.int),
}
}
case *types.Array: // or *array
ct = &ast.ArrayType{
Len: makeIntLit(t.Len()),
Elt: makeIdent(st.int),
}
default:
panic(t)
}
st.emitUnique(ct, uniques)
}
// definitely non-constant
case *ast.SelectorExpr:
_ = st.expr(e.X)
_ = st.expr(e.Sel)
// The defer is sufficient to handle
// qualified identifiers (pkg.Const).
// All other cases are definitely non-constant.
case *ast.IndexExpr:
if tv.IsType() {
// type C[T]
_ = st.expr(e.X)
_ = st.expr(e.Index)
} else {
// term x[i]
//
// Constraints (if x is slice/string/array/*array, not map):
// - i >= 0
// if i is a fallible constant
// - i < len(x)
// if x is array/*array and
// i is a fallible constant;
// or if s is a string and both i,
// s are maybe-constants,
// but not both are constants.
kX := st.expr(e.X)
kI := st.expr(e.Index)
if kI != nil && !is[*types.Map](st.info.TypeOf(e.X).Underlying()) {
if kI, ok := kI.(ast.Expr); ok {
st.emitNonNegative(kI)
}
// Emit constraint to check indices against known length.
// TODO(adonovan): factor with SliceExpr logic.
var x ast.Expr
if kX != nil {
// string
x = st.toExpr(kX)
} else if arr, ok := typeparams.CoreType(typeparams.Deref(st.info.TypeOf(e.X))).(*types.Array); ok {
// array, *array
x = &ast.CompositeLit{
Type: &ast.ArrayType{
Len: makeIntLit(arr.Len()),
Elt: makeIdent(st.int),
},
}
}
if x != nil {
st.emit(&ast.IndexExpr{
X: x,
Index: st.toExpr(kI),
})
}
}
}
// definitely non-constant
case *ast.SliceExpr:
// x[low:high:max]
//
// Emit non-negative constraints for each index,
// plus low <= high <= max <= len(x)
// for each pair that are maybe-constant
// but not definitely constant.
kX := st.expr(e.X)
var kLow, kHigh, kMax any
if e.Low != nil {
kLow = st.expr(e.Low)
if kLow != nil {
if kLow, ok := kLow.(ast.Expr); ok {
st.emitNonNegative(kLow)
}
}
}
if e.High != nil {
kHigh = st.expr(e.High)
if kHigh != nil {
if kHigh, ok := kHigh.(ast.Expr); ok {
st.emitNonNegative(kHigh)
}
if kLow != nil {
st.emitMonotonic(st.toExpr(kLow), st.toExpr(kHigh))
}
}
}
if e.Max != nil {
kMax = st.expr(e.Max)
if kMax != nil {
if kMax, ok := kMax.(ast.Expr); ok {
st.emitNonNegative(kMax)
}
if kHigh != nil {
st.emitMonotonic(st.toExpr(kHigh), st.toExpr(kMax))
}
}
}
// Emit constraint to check indices against known length.
var x ast.Expr
if kX != nil {
// string
x = st.toExpr(kX)
} else if arr, ok := typeparams.CoreType(typeparams.Deref(st.info.TypeOf(e.X))).(*types.Array); ok {
// array, *array
x = &ast.CompositeLit{
Type: &ast.ArrayType{
Len: makeIntLit(arr.Len()),
Elt: makeIdent(st.int),
},
}
}
if x != nil {
// Avoid slice[::max] if kHigh is nonconstant (nil).
high, max := st.toExpr(kHigh), st.toExpr(kMax)
if high == nil {
high = max // => slice[:max:max]
}
st.emit(&ast.SliceExpr{
X: x,
Low: st.toExpr(kLow),
High: high,
Max: max,
})
}
// definitely non-constant
case *ast.TypeAssertExpr:
_ = st.expr(e.X)
if e.Type != nil {
_ = st.expr(e.Type)
}
case *ast.CallExpr:
_ = st.expr(e.Fun)
if tv, ok := st.info.Types[e.Fun]; ok && tv.IsType() {
// conversion T(x)
//
// Possible "value out of range".
kX := st.expr(e.Args[0])
if kX != nil && isBasic(tv.Type, types.IsConstType) {
conv := convert(makeIdent(st.typename(tv.Type)), st.toExpr(kX))
if is[ast.Expr](kX) {
st.emit(conv)
}
return conv
}
return nil // definitely non-constant
}
// call f(x)
all := true // all args are possibly-constant
kArgs := make([]ast.Expr, len(e.Args))
for i, arg := range e.Args {
if kArg := st.expr(arg); kArg != nil {
kArgs[i] = st.toExpr(kArg)
} else {
all = false
}
}
// Calls to built-ins with fallibly constant arguments
// may become constant. All other calls are either
// constant or non-constant
if id, ok := e.Fun.(*ast.Ident); ok && all && tv.Value == nil {
if builtin, ok := st.info.Uses[id].(*types.Builtin); ok {
switch builtin.Name() {
case "len", "imag", "real", "complex", "min", "max":
return &ast.CallExpr{
Fun: id,
Args: kArgs,
Ellipsis: e.Ellipsis,
}
}
}
}
case *ast.StarExpr: // *T, *ptr
_ = st.expr(e.X)
case *ast.UnaryExpr:
// + - ! ^ & <- ~
//
// Possible "negation of minint".
// Emit constraint: -x
kX := st.expr(e.X)
if kX != nil && !is[types.TypeAndValue](kX) {
if e.Op == token.SUB {
st.emit(&ast.UnaryExpr{
Op: e.Op,
X: st.toExpr(kX),
})
}
return &ast.UnaryExpr{
Op: e.Op,
X: st.toExpr(kX),
}
}
case *ast.BinaryExpr:
kX := st.expr(e.X)
kY := st.expr(e.Y)
switch e.Op {
case token.QUO, token.REM:
// x/y, x%y
//
// Possible "integer division by zero" or
// "minint / -1" overflow.
// Emit constraint: x/y or 1/y
if kY != nil {
if kX == nil {
kX = makeIntLit(1)
}
st.emit(&ast.BinaryExpr{
Op: e.Op,
X: st.toExpr(kX),
Y: st.toExpr(kY),
})
}
case token.ADD, token.SUB, token.MUL:
// x+y, x-y, x*y
//
// Possible "arithmetic overflow".
// Emit constraint: x+y
if kX != nil && kY != nil {
st.emit(&ast.BinaryExpr{
Op: e.Op,
X: st.toExpr(kX),
Y: st.toExpr(kY),
})
}
case token.SHL, token.SHR:
// x << y, x >> y
//
// Possible "constant shift too large".
// Either operand may be too large individually,
// and they may be too large together.
// Emit constraint:
// x << y (if both maybe-constant)
// x << 0 (if y is non-constant)
// 1 << y (if x is non-constant)
if kX != nil || kY != nil {
x := st.toExpr(kX)
if x == nil {
x = makeIntLit(1)
}
y := st.toExpr(kY)
if y == nil {
y = makeIntLit(0)
}
st.emit(&ast.BinaryExpr{
Op: e.Op,
X: x,
Y: y,
})
}
case token.LSS, token.GTR, token.EQL, token.NEQ, token.LEQ, token.GEQ:
// < > == != <= <=
//
// A "x cmp y" expression with constant operands x, y is
// itself constant, but I can't see how a constant bool
// could be fallible: the compiler doesn't reject duplicate
// boolean cases in a switch, presumably because boolean
// switches are less like n-way branches and more like
// sequential if-else chains with possibly overlapping
// conditions; and there is (sadly) no way to convert a
// boolean constant to an int constant.
}
if kX != nil && kY != nil {
return &ast.BinaryExpr{
Op: e.Op,
X: st.toExpr(kX),
Y: st.toExpr(kY),
}
}
// types
//
// We need to visit types (and even type parameters)
// in order to reach all the places where things could go wrong:
//
// const (
// s = ""
// i = 0
// )
// type C[T [unsafe.Sizeof(func() { _ = s[i] })]int] bool
case *ast.IndexListExpr:
_ = st.expr(e.X)
for _, expr := range e.Indices {
_ = st.expr(expr)
}
case *ast.Ellipsis:
if e.Elt != nil {
_ = st.expr(e.Elt)
}
case *ast.ArrayType:
if e.Len != nil {
_ = st.expr(e.Len)
}
_ = st.expr(e.Elt)
case *ast.StructType:
st.fieldTypes(e.Fields)
case *ast.FuncType:
st.fieldTypes(e.TypeParams)
st.fieldTypes(e.Params)
st.fieldTypes(e.Results)
case *ast.InterfaceType:
st.fieldTypes(e.Methods)
case *ast.MapType:
_ = st.expr(e.Key)
_ = st.expr(e.Value)
case *ast.ChanType:
_ = st.expr(e.Value)
}
return
}
// toExpr converts the result of visitExpr to a falcon expression.
// (We don't do this in visitExpr as we first need to discriminate
// constants from maybe-constants.)
func (st *falconState) toExpr(x any) ast.Expr {
switch x := x.(type) {
case nil:
return nil
case types.TypeAndValue:
lit := makeLiteral(x.Value)
if !isBasic(x.Type, types.IsUntyped) {
// convert to "typed" type
lit = &ast.CallExpr{
Fun: makeIdent(st.typename(x.Type)),
Args: []ast.Expr{lit},
}
}
return lit
case ast.Expr:
return x
default:
panic(x)
}
}
func makeLiteral(v constant.Value) ast.Expr {
switch v.Kind() {
case constant.Bool:
// Rather than refer to the true or false built-ins,
// which could be shadowed by poorly chosen parameter
// names, we use 0 == 0 for true and 0 != 0 for false.
op := token.EQL
if !constant.BoolVal(v) {
op = token.NEQ
}
return &ast.BinaryExpr{
Op: op,
X: makeIntLit(0),
Y: makeIntLit(0),
}
case constant.String:
return &ast.BasicLit{
Kind: token.STRING,
Value: v.ExactString(),
}
case constant.Int:
return &ast.BasicLit{
Kind: token.INT,
Value: v.ExactString(),
}
case constant.Float:
return &ast.BasicLit{
Kind: token.FLOAT,
Value: v.ExactString(),
}
case constant.Complex:
// The components could be float or int.
y := makeLiteral(constant.Imag(v))
y.(*ast.BasicLit).Value += "i" // ugh
if re := constant.Real(v); !consteq(re, kZeroInt) {
// complex: x + yi
y = &ast.BinaryExpr{
Op: token.ADD,
X: makeLiteral(re),
Y: y,
}
}
return y
default:
panic(v.Kind())
}
}
func makeIntLit(x int64) *ast.BasicLit {
return &ast.BasicLit{
Kind: token.INT,
Value: strconv.FormatInt(x, 10),
}
}
func isBasic(t types.Type, info types.BasicInfo) bool {
basic, ok := t.Underlying().(*types.Basic)
return ok && basic.Info()&info != 0
}
|