1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vta
import (
"go/types"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/internal/typeparams"
)
func canAlias(n1, n2 node) bool {
return isReferenceNode(n1) && isReferenceNode(n2)
}
func isReferenceNode(n node) bool {
if _, ok := n.(nestedPtrInterface); ok {
return true
}
if _, ok := n.(nestedPtrFunction); ok {
return true
}
if _, ok := n.Type().(*types.Pointer); ok {
return true
}
return false
}
// hasInFlow checks if a concrete type can flow to node `n`.
// Returns yes iff the type of `n` satisfies one the following:
// 1. is an interface
// 2. is a (nested) pointer to interface (needed for, say,
// slice elements of nested pointers to interface type)
// 3. is a function type (needed for higher-order type flow)
// 4. is a (nested) pointer to function (needed for, say,
// slice elements of nested pointers to function type)
// 5. is a global Recover or Panic node
func hasInFlow(n node) bool {
if _, ok := n.(panicArg); ok {
return true
}
if _, ok := n.(recoverReturn); ok {
return true
}
t := n.Type()
if i := interfaceUnderPtr(t); i != nil {
return true
}
if f := functionUnderPtr(t); f != nil {
return true
}
return types.IsInterface(t) || isFunction(t)
}
func isFunction(t types.Type) bool {
_, ok := t.Underlying().(*types.Signature)
return ok
}
// interfaceUnderPtr checks if type `t` is a potentially nested
// pointer to interface and if yes, returns the interface type.
// Otherwise, returns nil.
func interfaceUnderPtr(t types.Type) types.Type {
seen := make(map[types.Type]bool)
var visit func(types.Type) types.Type
visit = func(t types.Type) types.Type {
if seen[t] {
return nil
}
seen[t] = true
p, ok := t.Underlying().(*types.Pointer)
if !ok {
return nil
}
if types.IsInterface(p.Elem()) {
return p.Elem()
}
return visit(p.Elem())
}
return visit(t)
}
// functionUnderPtr checks if type `t` is a potentially nested
// pointer to function type and if yes, returns the function type.
// Otherwise, returns nil.
func functionUnderPtr(t types.Type) types.Type {
seen := make(map[types.Type]bool)
var visit func(types.Type) types.Type
visit = func(t types.Type) types.Type {
if seen[t] {
return nil
}
seen[t] = true
p, ok := t.Underlying().(*types.Pointer)
if !ok {
return nil
}
if isFunction(p.Elem()) {
return p.Elem()
}
return visit(p.Elem())
}
return visit(t)
}
// sliceArrayElem returns the element type of type `t` that is
// expected to be a (pointer to) array, slice or string, consistent with
// the ssa.Index and ssa.IndexAddr instructions. Panics otherwise.
func sliceArrayElem(t types.Type) types.Type {
switch u := t.Underlying().(type) {
case *types.Pointer:
return u.Elem().Underlying().(*types.Array).Elem()
case *types.Array:
return u.Elem()
case *types.Slice:
return u.Elem()
case *types.Basic:
return types.Typ[types.Byte]
case *types.Interface: // type param.
terms, err := typeparams.InterfaceTermSet(u)
if err != nil || len(terms) == 0 {
panic(t)
}
return sliceArrayElem(terms[0].Type()) // Element types must match.
default:
panic(t)
}
}
// siteCallees computes a set of callees for call site `c` given program `callgraph`.
func siteCallees(c ssa.CallInstruction, callgraph *callgraph.Graph) []*ssa.Function {
var matches []*ssa.Function
node := callgraph.Nodes[c.Parent()]
if node == nil {
return nil
}
for _, edge := range node.Out {
if edge.Site == c {
matches = append(matches, edge.Callee.Func)
}
}
return matches
}
func canHaveMethods(t types.Type) bool {
if _, ok := t.(*types.Named); ok {
return true
}
u := t.Underlying()
switch u.(type) {
case *types.Interface, *types.Signature, *types.Struct:
return true
default:
return false
}
}
// calls returns the set of call instructions in `f`.
func calls(f *ssa.Function) []ssa.CallInstruction {
var calls []ssa.CallInstruction
for _, bl := range f.Blocks {
for _, instr := range bl.Instrs {
if c, ok := instr.(ssa.CallInstruction); ok {
calls = append(calls, c)
}
}
}
return calls
}
// intersect produces an intersection of functions in `fs1` and `fs2`.
func intersect(fs1, fs2 []*ssa.Function) []*ssa.Function {
m := make(map[*ssa.Function]bool)
for _, f := range fs1 {
m[f] = true
}
var res []*ssa.Function
for _, f := range fs2 {
if m[f] {
res = append(res, f)
}
}
return res
}
|