1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stubmethods
import (
"bytes"
"fmt"
"go/ast"
"go/format"
"go/token"
"go/types"
"strconv"
"strings"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/internal/analysisinternal"
"golang.org/x/tools/internal/typesinternal"
)
const Doc = `stub methods analyzer
This analyzer generates method stubs for concrete types
in order to implement a target interface`
var Analyzer = &analysis.Analyzer{
Name: "stubmethods",
Doc: Doc,
Requires: []*analysis.Analyzer{inspect.Analyzer},
Run: run,
RunDespiteErrors: true,
}
func run(pass *analysis.Pass) (interface{}, error) {
for _, err := range pass.TypeErrors {
ifaceErr := strings.Contains(err.Msg, "missing method") || strings.HasPrefix(err.Msg, "cannot convert")
if !ifaceErr {
continue
}
var file *ast.File
for _, f := range pass.Files {
if f.Pos() <= err.Pos && err.Pos < f.End() {
file = f
break
}
}
if file == nil {
continue
}
// Get the end position of the error.
_, _, endPos, ok := typesinternal.ReadGo116ErrorData(err)
if !ok {
var buf bytes.Buffer
if err := format.Node(&buf, pass.Fset, file); err != nil {
continue
}
endPos = analysisinternal.TypeErrorEndPos(pass.Fset, buf.Bytes(), err.Pos)
}
path, _ := astutil.PathEnclosingInterval(file, err.Pos, endPos)
si := GetStubInfo(pass.TypesInfo, path, err.Pos)
if si == nil {
continue
}
qf := RelativeToFiles(si.Concrete.Obj().Pkg(), file, nil, nil)
pass.Report(analysis.Diagnostic{
Pos: err.Pos,
End: endPos,
Message: fmt.Sprintf("Implement %s", types.TypeString(si.Interface.Type(), qf)),
})
}
return nil, nil
}
// StubInfo represents a concrete type
// that wants to stub out an interface type
type StubInfo struct {
// Interface is the interface that the client wants to implement.
// When the interface is defined, the underlying object will be a TypeName.
// Note that we keep track of types.Object instead of types.Type in order
// to keep a reference to the declaring object's package and the ast file
// in the case where the concrete type file requires a new import that happens to be renamed
// in the interface file.
// TODO(marwan-at-work): implement interface literals.
Interface *types.TypeName
Concrete *types.Named
Pointer bool
}
// GetStubInfo determines whether the "missing method error"
// can be used to deduced what the concrete and interface types are.
func GetStubInfo(ti *types.Info, path []ast.Node, pos token.Pos) *StubInfo {
for _, n := range path {
switch n := n.(type) {
case *ast.ValueSpec:
return fromValueSpec(ti, n, pos)
case *ast.ReturnStmt:
// An error here may not indicate a real error the user should know about, but it may.
// Therefore, it would be best to log it out for debugging/reporting purposes instead of ignoring
// it. However, event.Log takes a context which is not passed via the analysis package.
// TODO(marwan-at-work): properly log this error.
si, _ := fromReturnStmt(ti, pos, path, n)
return si
case *ast.AssignStmt:
return fromAssignStmt(ti, n, pos)
case *ast.CallExpr:
// Note that some call expressions don't carry the interface type
// because they don't point to a function or method declaration elsewhere.
// For eaxmple, "var Interface = (*Concrete)(nil)". In that case, continue
// this loop to encounter other possibilities such as *ast.ValueSpec or others.
si := fromCallExpr(ti, pos, n)
if si != nil {
return si
}
}
}
return nil
}
// fromCallExpr tries to find an *ast.CallExpr's function declaration and
// analyzes a function call's signature against the passed in parameter to deduce
// the concrete and interface types.
func fromCallExpr(ti *types.Info, pos token.Pos, ce *ast.CallExpr) *StubInfo {
paramIdx := -1
for i, p := range ce.Args {
if pos >= p.Pos() && pos <= p.End() {
paramIdx = i
break
}
}
if paramIdx == -1 {
return nil
}
p := ce.Args[paramIdx]
concObj, pointer := concreteType(p, ti)
if concObj == nil || concObj.Obj().Pkg() == nil {
return nil
}
tv, ok := ti.Types[ce.Fun]
if !ok {
return nil
}
sig, ok := tv.Type.(*types.Signature)
if !ok {
return nil
}
sigVar := sig.Params().At(paramIdx)
iface := ifaceObjFromType(sigVar.Type())
if iface == nil {
return nil
}
return &StubInfo{
Concrete: concObj,
Pointer: pointer,
Interface: iface,
}
}
// fromReturnStmt analyzes a "return" statement to extract
// a concrete type that is trying to be returned as an interface type.
//
// For example, func() io.Writer { return myType{} }
// would return StubInfo with the interface being io.Writer and the concrete type being myType{}.
func fromReturnStmt(ti *types.Info, pos token.Pos, path []ast.Node, rs *ast.ReturnStmt) (*StubInfo, error) {
returnIdx := -1
for i, r := range rs.Results {
if pos >= r.Pos() && pos <= r.End() {
returnIdx = i
}
}
if returnIdx == -1 {
return nil, fmt.Errorf("pos %d not within return statement bounds: [%d-%d]", pos, rs.Pos(), rs.End())
}
concObj, pointer := concreteType(rs.Results[returnIdx], ti)
if concObj == nil || concObj.Obj().Pkg() == nil {
return nil, nil
}
ef := enclosingFunction(path, ti)
if ef == nil {
return nil, fmt.Errorf("could not find the enclosing function of the return statement")
}
iface := ifaceType(ef.Results.List[returnIdx].Type, ti)
if iface == nil {
return nil, nil
}
return &StubInfo{
Concrete: concObj,
Pointer: pointer,
Interface: iface,
}, nil
}
// fromValueSpec returns *StubInfo from a variable declaration such as
// var x io.Writer = &T{}
func fromValueSpec(ti *types.Info, vs *ast.ValueSpec, pos token.Pos) *StubInfo {
var idx int
for i, vs := range vs.Values {
if pos >= vs.Pos() && pos <= vs.End() {
idx = i
break
}
}
valueNode := vs.Values[idx]
ifaceNode := vs.Type
callExp, ok := valueNode.(*ast.CallExpr)
// if the ValueSpec is `var _ = myInterface(...)`
// as opposed to `var _ myInterface = ...`
if ifaceNode == nil && ok && len(callExp.Args) == 1 {
ifaceNode = callExp.Fun
valueNode = callExp.Args[0]
}
concObj, pointer := concreteType(valueNode, ti)
if concObj == nil || concObj.Obj().Pkg() == nil {
return nil
}
ifaceObj := ifaceType(ifaceNode, ti)
if ifaceObj == nil {
return nil
}
return &StubInfo{
Concrete: concObj,
Interface: ifaceObj,
Pointer: pointer,
}
}
// fromAssignStmt returns *StubInfo from a variable re-assignment such as
// var x io.Writer
// x = &T{}
func fromAssignStmt(ti *types.Info, as *ast.AssignStmt, pos token.Pos) *StubInfo {
idx := -1
var lhs, rhs ast.Expr
// Given a re-assignment interface conversion error,
// the compiler error shows up on the right hand side of the expression.
// For example, x = &T{} where x is io.Writer highlights the error
// under "&T{}" and not "x".
for i, hs := range as.Rhs {
if pos >= hs.Pos() && pos <= hs.End() {
idx = i
break
}
}
if idx == -1 {
return nil
}
// Technically, this should never happen as
// we would get a "cannot assign N values to M variables"
// before we get an interface conversion error. Nonetheless,
// guard against out of range index errors.
if idx >= len(as.Lhs) {
return nil
}
lhs, rhs = as.Lhs[idx], as.Rhs[idx]
ifaceObj := ifaceType(lhs, ti)
if ifaceObj == nil {
return nil
}
concType, pointer := concreteType(rhs, ti)
if concType == nil || concType.Obj().Pkg() == nil {
return nil
}
return &StubInfo{
Concrete: concType,
Interface: ifaceObj,
Pointer: pointer,
}
}
// RelativeToFiles returns a types.Qualifier that formats package
// names according to the import environments of the files that define
// the concrete type and the interface type. (Only the imports of the
// latter file are provided.)
//
// This is similar to types.RelativeTo except if a file imports the package with a different name,
// then it will use it. And if the file does import the package but it is ignored,
// then it will return the original name. It also prefers package names in importEnv in case
// an import is missing from concFile but is present among importEnv.
//
// Additionally, if missingImport is not nil, the function will be called whenever the concFile
// is presented with a package that is not imported. This is useful so that as types.TypeString is
// formatting a function signature, it is identifying packages that will need to be imported when
// stubbing an interface.
func RelativeToFiles(concPkg *types.Package, concFile *ast.File, ifaceImports []*ast.ImportSpec, missingImport func(name, path string)) types.Qualifier {
return func(other *types.Package) string {
if other == concPkg {
return ""
}
// Check if the concrete file already has the given import,
// if so return the default package name or the renamed import statement.
for _, imp := range concFile.Imports {
impPath, _ := strconv.Unquote(imp.Path.Value)
isIgnored := imp.Name != nil && (imp.Name.Name == "." || imp.Name.Name == "_")
// TODO(adonovan): this comparison disregards a vendor prefix in 'other'.
if impPath == other.Path() && !isIgnored {
importName := other.Name()
if imp.Name != nil {
importName = imp.Name.Name
}
return importName
}
}
// If the concrete file does not have the import, check if the package
// is renamed in the interface file and prefer that.
var importName string
for _, imp := range ifaceImports {
impPath, _ := strconv.Unquote(imp.Path.Value)
isIgnored := imp.Name != nil && (imp.Name.Name == "." || imp.Name.Name == "_")
// TODO(adonovan): this comparison disregards a vendor prefix in 'other'.
if impPath == other.Path() && !isIgnored {
if imp.Name != nil && imp.Name.Name != concPkg.Name() {
importName = imp.Name.Name
}
break
}
}
if missingImport != nil {
missingImport(importName, other.Path())
}
// Up until this point, importName must stay empty when calling missingImport,
// otherwise we'd end up with `import time "time"` which doesn't look idiomatic.
if importName == "" {
importName = other.Name()
}
return importName
}
}
// ifaceType will try to extract the types.Object that defines
// the interface given the ast.Expr where the "missing method"
// or "conversion" errors happen.
func ifaceType(n ast.Expr, ti *types.Info) *types.TypeName {
tv, ok := ti.Types[n]
if !ok {
return nil
}
return ifaceObjFromType(tv.Type)
}
func ifaceObjFromType(t types.Type) *types.TypeName {
named, ok := t.(*types.Named)
if !ok {
return nil
}
_, ok = named.Underlying().(*types.Interface)
if !ok {
return nil
}
// Interfaces defined in the "builtin" package return nil a Pkg().
// But they are still real interfaces that we need to make a special case for.
// Therefore, protect gopls from panicking if a new interface type was added in the future.
if named.Obj().Pkg() == nil && named.Obj().Name() != "error" {
return nil
}
return named.Obj()
}
// concreteType tries to extract the *types.Named that defines
// the concrete type given the ast.Expr where the "missing method"
// or "conversion" errors happened. If the concrete type is something
// that cannot have methods defined on it (such as basic types), this
// method will return a nil *types.Named. The second return parameter
// is a boolean that indicates whether the concreteType was defined as a
// pointer or value.
func concreteType(n ast.Expr, ti *types.Info) (*types.Named, bool) {
tv, ok := ti.Types[n]
if !ok {
return nil, false
}
typ := tv.Type
ptr, isPtr := typ.(*types.Pointer)
if isPtr {
typ = ptr.Elem()
}
named, ok := typ.(*types.Named)
if !ok {
return nil, false
}
return named, isPtr
}
// enclosingFunction returns the signature and type of the function
// enclosing the given position.
func enclosingFunction(path []ast.Node, info *types.Info) *ast.FuncType {
for _, node := range path {
switch t := node.(type) {
case *ast.FuncDecl:
if _, ok := info.Defs[t.Name]; ok {
return t.Type
}
case *ast.FuncLit:
if _, ok := info.Types[t]; ok {
return t.Type
}
}
}
return nil
}
|