1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package completion
import (
"context"
"go/types"
"strings"
"time"
)
// MaxDeepCompletions limits deep completion results because in most cases
// there are too many to be useful.
const MaxDeepCompletions = 3
// deepCompletionState stores our state as we search for deep completions.
// "deep completion" refers to searching into objects' fields and methods to
// find more completion candidates.
type deepCompletionState struct {
// enabled indicates whether deep completion is permitted.
enabled bool
// queueClosed is used to disable adding new sub-fields to search queue
// once we're running out of our time budget.
queueClosed bool
// thisQueue holds the current breadth first search queue.
thisQueue []candidate
// nextQueue holds the next breadth first search iteration's queue.
nextQueue []candidate
// highScores tracks the highest deep candidate scores we have found
// so far. This is used to avoid work for low scoring deep candidates.
highScores [MaxDeepCompletions]float64
// candidateCount is the count of unique deep candidates encountered
// so far.
candidateCount int
}
// enqueue adds a candidate to the search queue.
func (s *deepCompletionState) enqueue(cand candidate) {
s.nextQueue = append(s.nextQueue, cand)
}
// dequeue removes and returns the leftmost element from the search queue.
func (s *deepCompletionState) dequeue() *candidate {
var cand *candidate
cand, s.thisQueue = &s.thisQueue[len(s.thisQueue)-1], s.thisQueue[:len(s.thisQueue)-1]
return cand
}
// scorePenalty computes a deep candidate score penalty. A candidate is
// penalized based on depth to favor shallower candidates. We also give a
// slight bonus to unexported objects and a slight additional penalty to
// function objects.
func (s *deepCompletionState) scorePenalty(cand *candidate) float64 {
var deepPenalty float64
for _, dc := range cand.path {
deepPenalty++
if !dc.Exported() {
deepPenalty -= 0.1
}
if _, isSig := dc.Type().Underlying().(*types.Signature); isSig {
deepPenalty += 0.1
}
}
// Normalize penalty to a max depth of 10.
return deepPenalty / 10
}
// isHighScore returns whether score is among the top MaxDeepCompletions deep
// candidate scores encountered so far. If so, it adds score to highScores,
// possibly displacing an existing high score.
func (s *deepCompletionState) isHighScore(score float64) bool {
// Invariant: s.highScores is sorted with highest score first. Unclaimed
// positions are trailing zeros.
// If we beat an existing score then take its spot.
for i, deepScore := range s.highScores {
if score <= deepScore {
continue
}
if deepScore != 0 && i != len(s.highScores)-1 {
// If this wasn't an empty slot then we need to scooch everyone
// down one spot.
copy(s.highScores[i+1:], s.highScores[i:])
}
s.highScores[i] = score
return true
}
return false
}
// newPath returns path from search root for an object following a given
// candidate.
func (s *deepCompletionState) newPath(cand candidate, obj types.Object) []types.Object {
path := make([]types.Object, len(cand.path)+1)
copy(path, cand.path)
path[len(path)-1] = obj
return path
}
// deepSearch searches a candidate and its subordinate objects for completion
// items if deep completion is enabled and adds the valid candidates to
// completion items.
func (c *completer) deepSearch(ctx context.Context) {
defer func() {
// We can return early before completing the search, so be sure to
// clear out our queues to not impact any further invocations.
c.deepState.thisQueue = c.deepState.thisQueue[:0]
c.deepState.nextQueue = c.deepState.nextQueue[:0]
}()
for len(c.deepState.nextQueue) > 0 {
c.deepState.thisQueue, c.deepState.nextQueue = c.deepState.nextQueue, c.deepState.thisQueue[:0]
outer:
for _, cand := range c.deepState.thisQueue {
obj := cand.obj
if obj == nil {
continue
}
// At the top level, dedupe by object.
if len(cand.path) == 0 {
if c.seen[obj] {
continue
}
c.seen[obj] = true
}
// If obj is not accessible because it lives in another package and is
// not exported, don't treat it as a completion candidate unless it's
// a package completion candidate.
if !c.completionContext.packageCompletion &&
obj.Pkg() != nil && obj.Pkg() != c.pkg.GetTypes() && !obj.Exported() {
continue
}
// If we want a type name, don't offer non-type name candidates.
// However, do offer package names since they can contain type names,
// and do offer any candidate without a type since we aren't sure if it
// is a type name or not (i.e. unimported candidate).
if c.wantTypeName() && obj.Type() != nil && !isTypeName(obj) && !isPkgName(obj) {
continue
}
// When searching deep, make sure we don't have a cycle in our chain.
// We don't dedupe by object because we want to allow both "foo.Baz"
// and "bar.Baz" even though "Baz" is represented the same types.Object
// in both.
for _, seenObj := range cand.path {
if seenObj == obj {
continue outer
}
}
c.addCandidate(ctx, &cand)
c.deepState.candidateCount++
if c.opts.budget > 0 && c.deepState.candidateCount%100 == 0 {
spent := float64(time.Since(c.startTime)) / float64(c.opts.budget)
select {
case <-ctx.Done():
return
default:
// If we are almost out of budgeted time, no further elements
// should be added to the queue. This ensures remaining time is
// used for processing current queue.
if !c.deepState.queueClosed && spent >= 0.85 {
c.deepState.queueClosed = true
}
}
}
// if deep search is disabled, don't add any more candidates.
if !c.deepState.enabled || c.deepState.queueClosed {
continue
}
// Searching members for a type name doesn't make sense.
if isTypeName(obj) {
continue
}
if obj.Type() == nil {
continue
}
// Don't search embedded fields because they were already included in their
// parent's fields.
if v, ok := obj.(*types.Var); ok && v.Embedded() {
continue
}
if sig, ok := obj.Type().Underlying().(*types.Signature); ok {
// If obj is a function that takes no arguments and returns one
// value, keep searching across the function call.
if sig.Params().Len() == 0 && sig.Results().Len() == 1 {
path := c.deepState.newPath(cand, obj)
// The result of a function call is not addressable.
c.methodsAndFields(sig.Results().At(0).Type(), false, cand.imp, func(newCand candidate) {
newCand.pathInvokeMask = cand.pathInvokeMask | (1 << uint64(len(cand.path)))
newCand.path = path
c.deepState.enqueue(newCand)
})
}
}
path := c.deepState.newPath(cand, obj)
switch obj := obj.(type) {
case *types.PkgName:
c.packageMembers(obj.Imported(), stdScore, cand.imp, func(newCand candidate) {
newCand.pathInvokeMask = cand.pathInvokeMask
newCand.path = path
c.deepState.enqueue(newCand)
})
default:
c.methodsAndFields(obj.Type(), cand.addressable, cand.imp, func(newCand candidate) {
newCand.pathInvokeMask = cand.pathInvokeMask
newCand.path = path
c.deepState.enqueue(newCand)
})
}
}
}
}
// addCandidate adds a completion candidate to suggestions, without searching
// its members for more candidates.
func (c *completer) addCandidate(ctx context.Context, cand *candidate) {
obj := cand.obj
if c.matchingCandidate(cand) {
cand.score *= highScore
if p := c.penalty(cand); p > 0 {
cand.score *= (1 - p)
}
} else if isTypeName(obj) {
// If obj is a *types.TypeName that didn't otherwise match, check
// if a literal object of this type makes a good candidate.
// We only care about named types (i.e. don't want builtin types).
if _, isNamed := obj.Type().(*types.Named); isNamed {
c.literal(ctx, obj.Type(), cand.imp)
}
}
// Lower score of method calls so we prefer fields and vars over calls.
if cand.hasMod(invoke) {
if sig, ok := obj.Type().Underlying().(*types.Signature); ok && sig.Recv() != nil {
cand.score *= 0.9
}
}
// Prefer private objects over public ones.
if !obj.Exported() && obj.Parent() != types.Universe {
cand.score *= 1.1
}
// Slight penalty for index modifier (e.g. changing "foo" to
// "foo[]") to curb false positives.
if cand.hasMod(index) {
cand.score *= 0.9
}
// Favor shallow matches by lowering score according to depth.
cand.score -= cand.score * c.deepState.scorePenalty(cand)
if cand.score < 0 {
cand.score = 0
}
cand.name = deepCandName(cand)
if item, err := c.item(ctx, *cand); err == nil {
c.items = append(c.items, item)
}
}
// deepCandName produces the full candidate name including any
// ancestor objects. For example, "foo.bar().baz" for candidate "baz".
func deepCandName(cand *candidate) string {
totalLen := len(cand.obj.Name())
for i, obj := range cand.path {
totalLen += len(obj.Name()) + 1
if cand.pathInvokeMask&(1<<uint16(i)) > 0 {
totalLen += 2
}
}
var buf strings.Builder
buf.Grow(totalLen)
for i, obj := range cand.path {
buf.WriteString(obj.Name())
if cand.pathInvokeMask&(1<<uint16(i)) > 0 {
buf.WriteByte('(')
buf.WriteByte(')')
}
buf.WriteByte('.')
}
buf.WriteString(cand.obj.Name())
return buf.String()
}
// penalty reports a score penalty for cand in the range (0, 1).
// For example, a candidate is penalized if it has already been used
// in another switch case statement.
func (c *completer) penalty(cand *candidate) float64 {
for _, p := range c.inference.penalized {
if c.objChainMatches(cand, p.objChain) {
return p.penalty
}
}
return 0
}
// objChainMatches reports whether cand combined with the surrounding
// object prefix matches chain.
func (c *completer) objChainMatches(cand *candidate, chain []types.Object) bool {
// For example, when completing:
//
// foo.ba<>
//
// If we are considering the deep candidate "bar.baz", cand is baz,
// objChain is [foo] and deepChain is [bar]. We would match the
// chain [foo, bar, baz].
if len(chain) != len(c.inference.objChain)+len(cand.path)+1 {
return false
}
if chain[len(chain)-1] != cand.obj {
return false
}
for i, o := range c.inference.objChain {
if chain[i] != o {
return false
}
}
for i, o := range cand.path {
if chain[i+len(c.inference.objChain)] != o {
return false
}
}
return true
}
|