File: old.go

package info (click to toggle)
golang-golang-x-tools 1%3A0.5.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bookworm-backports
  • size: 16,592 kB
  • sloc: javascript: 2,011; asm: 1,635; sh: 192; yacc: 155; makefile: 52; ansic: 8
file content (480 lines) | stat: -rw-r--r-- 13,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package lcs

// TODO(adonovan): remove unclear references to "old" in this package.

import (
	"fmt"
)

// A Diff is a replacement of a portion of A by a portion of B.
type Diff struct {
	Start, End         int // offsets of portion to delete in A
	ReplStart, ReplEnd int // offset of replacement text in B
}

// DiffStrings returns the differences between two strings.
// It does not respect rune boundaries.
func DiffStrings(a, b string) []Diff { return diff(stringSeqs{a, b}) }

// DiffBytes returns the differences between two byte sequences.
// It does not respect rune boundaries.
func DiffBytes(a, b []byte) []Diff { return diff(bytesSeqs{a, b}) }

// DiffRunes returns the differences between two rune sequences.
func DiffRunes(a, b []rune) []Diff { return diff(runesSeqs{a, b}) }

func diff(seqs sequences) []Diff {
	// A limit on how deeply the LCS algorithm should search. The value is just a guess.
	const maxDiffs = 30
	diff, _ := compute(seqs, twosided, maxDiffs/2)
	return diff
}

// compute computes the list of differences between two sequences,
// along with the LCS. It is exercised directly by tests.
// The algorithm is one of {forward, backward, twosided}.
func compute(seqs sequences, algo func(*editGraph) lcs, limit int) ([]Diff, lcs) {
	if limit <= 0 {
		limit = 1 << 25 // effectively infinity
	}
	alen, blen := seqs.lengths()
	g := &editGraph{
		seqs:  seqs,
		vf:    newtriang(limit),
		vb:    newtriang(limit),
		limit: limit,
		ux:    alen,
		uy:    blen,
		delta: alen - blen,
	}
	lcs := algo(g)
	diffs := lcs.toDiffs(alen, blen)
	return diffs, lcs
}

// editGraph carries the information for computing the lcs of two sequences.
type editGraph struct {
	seqs   sequences
	vf, vb label // forward and backward labels

	limit int // maximal value of D
	// the bounding rectangle of the current edit graph
	lx, ly, ux, uy int
	delta          int // common subexpression: (ux-lx)-(uy-ly)
}

// toDiffs converts an LCS to a list of edits.
func (lcs lcs) toDiffs(alen, blen int) []Diff {
	var diffs []Diff
	var pa, pb int // offsets in a, b
	for _, l := range lcs {
		if pa < l.X || pb < l.Y {
			diffs = append(diffs, Diff{pa, l.X, pb, l.Y})
		}
		pa = l.X + l.Len
		pb = l.Y + l.Len
	}
	if pa < alen || pb < blen {
		diffs = append(diffs, Diff{pa, alen, pb, blen})
	}
	return diffs
}

// --- FORWARD ---

// fdone decides if the forwward path has reached the upper right
// corner of the rectangle. If so, it also returns the computed lcs.
func (e *editGraph) fdone(D, k int) (bool, lcs) {
	// x, y, k are relative to the rectangle
	x := e.vf.get(D, k)
	y := x - k
	if x == e.ux && y == e.uy {
		return true, e.forwardlcs(D, k)
	}
	return false, nil
}

// run the forward algorithm, until success or up to the limit on D.
func forward(e *editGraph) lcs {
	e.setForward(0, 0, e.lx)
	if ok, ans := e.fdone(0, 0); ok {
		return ans
	}
	// from D to D+1
	for D := 0; D < e.limit; D++ {
		e.setForward(D+1, -(D + 1), e.getForward(D, -D))
		if ok, ans := e.fdone(D+1, -(D + 1)); ok {
			return ans
		}
		e.setForward(D+1, D+1, e.getForward(D, D)+1)
		if ok, ans := e.fdone(D+1, D+1); ok {
			return ans
		}
		for k := -D + 1; k <= D-1; k += 2 {
			// these are tricky and easy to get backwards
			lookv := e.lookForward(k, e.getForward(D, k-1)+1)
			lookh := e.lookForward(k, e.getForward(D, k+1))
			if lookv > lookh {
				e.setForward(D+1, k, lookv)
			} else {
				e.setForward(D+1, k, lookh)
			}
			if ok, ans := e.fdone(D+1, k); ok {
				return ans
			}
		}
	}
	// D is too large
	// find the D path with maximal x+y inside the rectangle and
	// use that to compute the found part of the lcs
	kmax := -e.limit - 1
	diagmax := -1
	for k := -e.limit; k <= e.limit; k += 2 {
		x := e.getForward(e.limit, k)
		y := x - k
		if x+y > diagmax && x <= e.ux && y <= e.uy {
			diagmax, kmax = x+y, k
		}
	}
	return e.forwardlcs(e.limit, kmax)
}

// recover the lcs by backtracking from the farthest point reached
func (e *editGraph) forwardlcs(D, k int) lcs {
	var ans lcs
	for x := e.getForward(D, k); x != 0 || x-k != 0; {
		if ok(D-1, k-1) && x-1 == e.getForward(D-1, k-1) {
			// if (x-1,y) is labelled D-1, x--,D--,k--,continue
			D, k, x = D-1, k-1, x-1
			continue
		} else if ok(D-1, k+1) && x == e.getForward(D-1, k+1) {
			// if (x,y-1) is labelled D-1, x, D--,k++, continue
			D, k = D-1, k+1
			continue
		}
		// if (x-1,y-1)--(x,y) is a diagonal, prepend,x--,y--, continue
		y := x - k
		ans = ans.prepend(x+e.lx-1, y+e.ly-1)
		x--
	}
	return ans
}

// start at (x,y), go up the diagonal as far as possible,
// and label the result with d
func (e *editGraph) lookForward(k, relx int) int {
	rely := relx - k
	x, y := relx+e.lx, rely+e.ly
	if x < e.ux && y < e.uy {
		x += e.seqs.commonPrefixLen(x, e.ux, y, e.uy)
	}
	return x
}

func (e *editGraph) setForward(d, k, relx int) {
	x := e.lookForward(k, relx)
	e.vf.set(d, k, x-e.lx)
}

func (e *editGraph) getForward(d, k int) int {
	x := e.vf.get(d, k)
	return x
}

// --- BACKWARD ---

// bdone decides if the backward path has reached the lower left corner
func (e *editGraph) bdone(D, k int) (bool, lcs) {
	// x, y, k are relative to the rectangle
	x := e.vb.get(D, k)
	y := x - (k + e.delta)
	if x == 0 && y == 0 {
		return true, e.backwardlcs(D, k)
	}
	return false, nil
}

// run the backward algorithm, until success or up to the limit on D.
func backward(e *editGraph) lcs {
	e.setBackward(0, 0, e.ux)
	if ok, ans := e.bdone(0, 0); ok {
		return ans
	}
	// from D to D+1
	for D := 0; D < e.limit; D++ {
		e.setBackward(D+1, -(D + 1), e.getBackward(D, -D)-1)
		if ok, ans := e.bdone(D+1, -(D + 1)); ok {
			return ans
		}
		e.setBackward(D+1, D+1, e.getBackward(D, D))
		if ok, ans := e.bdone(D+1, D+1); ok {
			return ans
		}
		for k := -D + 1; k <= D-1; k += 2 {
			// these are tricky and easy to get wrong
			lookv := e.lookBackward(k, e.getBackward(D, k-1))
			lookh := e.lookBackward(k, e.getBackward(D, k+1)-1)
			if lookv < lookh {
				e.setBackward(D+1, k, lookv)
			} else {
				e.setBackward(D+1, k, lookh)
			}
			if ok, ans := e.bdone(D+1, k); ok {
				return ans
			}
		}
	}

	// D is too large
	// find the D path with minimal x+y inside the rectangle and
	// use that to compute the part of the lcs found
	kmax := -e.limit - 1
	diagmin := 1 << 25
	for k := -e.limit; k <= e.limit; k += 2 {
		x := e.getBackward(e.limit, k)
		y := x - (k + e.delta)
		if x+y < diagmin && x >= 0 && y >= 0 {
			diagmin, kmax = x+y, k
		}
	}
	if kmax < -e.limit {
		panic(fmt.Sprintf("no paths when limit=%d?", e.limit))
	}
	return e.backwardlcs(e.limit, kmax)
}

// recover the lcs by backtracking
func (e *editGraph) backwardlcs(D, k int) lcs {
	var ans lcs
	for x := e.getBackward(D, k); x != e.ux || x-(k+e.delta) != e.uy; {
		if ok(D-1, k-1) && x == e.getBackward(D-1, k-1) {
			// D--, k--, x unchanged
			D, k = D-1, k-1
			continue
		} else if ok(D-1, k+1) && x+1 == e.getBackward(D-1, k+1) {
			// D--, k++, x++
			D, k, x = D-1, k+1, x+1
			continue
		}
		y := x - (k + e.delta)
		ans = ans.append(x+e.lx, y+e.ly)
		x++
	}
	return ans
}

// start at (x,y), go down the diagonal as far as possible,
func (e *editGraph) lookBackward(k, relx int) int {
	rely := relx - (k + e.delta) // forward k = k + e.delta
	x, y := relx+e.lx, rely+e.ly
	if x > 0 && y > 0 {
		x -= e.seqs.commonSuffixLen(0, x, 0, y)
	}
	return x
}

// convert to rectangle, and label the result with d
func (e *editGraph) setBackward(d, k, relx int) {
	x := e.lookBackward(k, relx)
	e.vb.set(d, k, x-e.lx)
}

func (e *editGraph) getBackward(d, k int) int {
	x := e.vb.get(d, k)
	return x
}

// -- TWOSIDED ---

func twosided(e *editGraph) lcs {
	// The termination condition could be improved, as either the forward
	// or backward pass could succeed before Myers' Lemma applies.
	// Aside from questions of efficiency (is the extra testing cost-effective)
	// this is more likely to matter when e.limit is reached.
	e.setForward(0, 0, e.lx)
	e.setBackward(0, 0, e.ux)

	// from D to D+1
	for D := 0; D < e.limit; D++ {
		// just finished a backwards pass, so check
		if got, ok := e.twoDone(D, D); ok {
			return e.twolcs(D, D, got)
		}
		// do a forwards pass (D to D+1)
		e.setForward(D+1, -(D + 1), e.getForward(D, -D))
		e.setForward(D+1, D+1, e.getForward(D, D)+1)
		for k := -D + 1; k <= D-1; k += 2 {
			// these are tricky and easy to get backwards
			lookv := e.lookForward(k, e.getForward(D, k-1)+1)
			lookh := e.lookForward(k, e.getForward(D, k+1))
			if lookv > lookh {
				e.setForward(D+1, k, lookv)
			} else {
				e.setForward(D+1, k, lookh)
			}
		}
		// just did a forward pass, so check
		if got, ok := e.twoDone(D+1, D); ok {
			return e.twolcs(D+1, D, got)
		}
		// do a backward pass, D to D+1
		e.setBackward(D+1, -(D + 1), e.getBackward(D, -D)-1)
		e.setBackward(D+1, D+1, e.getBackward(D, D))
		for k := -D + 1; k <= D-1; k += 2 {
			// these are tricky and easy to get wrong
			lookv := e.lookBackward(k, e.getBackward(D, k-1))
			lookh := e.lookBackward(k, e.getBackward(D, k+1)-1)
			if lookv < lookh {
				e.setBackward(D+1, k, lookv)
			} else {
				e.setBackward(D+1, k, lookh)
			}
		}
	}

	// D too large. combine a forward and backward partial lcs
	// first, a forward one
	kmax := -e.limit - 1
	diagmax := -1
	for k := -e.limit; k <= e.limit; k += 2 {
		x := e.getForward(e.limit, k)
		y := x - k
		if x+y > diagmax && x <= e.ux && y <= e.uy {
			diagmax, kmax = x+y, k
		}
	}
	if kmax < -e.limit {
		panic(fmt.Sprintf("no forward paths when limit=%d?", e.limit))
	}
	lcs := e.forwardlcs(e.limit, kmax)
	// now a backward one
	// find the D path with minimal x+y inside the rectangle and
	// use that to compute the lcs
	diagmin := 1 << 25 // infinity
	for k := -e.limit; k <= e.limit; k += 2 {
		x := e.getBackward(e.limit, k)
		y := x - (k + e.delta)
		if x+y < diagmin && x >= 0 && y >= 0 {
			diagmin, kmax = x+y, k
		}
	}
	if kmax < -e.limit {
		panic(fmt.Sprintf("no backward paths when limit=%d?", e.limit))
	}
	lcs = append(lcs, e.backwardlcs(e.limit, kmax)...)
	// These may overlap (e.forwardlcs and e.backwardlcs return sorted lcs)
	ans := lcs.fix()
	return ans
}

// Does Myers' Lemma apply?
func (e *editGraph) twoDone(df, db int) (int, bool) {
	if (df+db+e.delta)%2 != 0 {
		return 0, false // diagonals cannot overlap
	}
	kmin := -db + e.delta
	if -df > kmin {
		kmin = -df
	}
	kmax := db + e.delta
	if df < kmax {
		kmax = df
	}
	for k := kmin; k <= kmax; k += 2 {
		x := e.vf.get(df, k)
		u := e.vb.get(db, k-e.delta)
		if u <= x {
			// is it worth looking at all the other k?
			for l := k; l <= kmax; l += 2 {
				x := e.vf.get(df, l)
				y := x - l
				u := e.vb.get(db, l-e.delta)
				v := u - l
				if x == u || u == 0 || v == 0 || y == e.uy || x == e.ux {
					return l, true
				}
			}
			return k, true
		}
	}
	return 0, false
}

func (e *editGraph) twolcs(df, db, kf int) lcs {
	// db==df || db+1==df
	x := e.vf.get(df, kf)
	y := x - kf
	kb := kf - e.delta
	u := e.vb.get(db, kb)
	v := u - kf

	// Myers proved there is a df-path from (0,0) to (u,v)
	// and a db-path from (x,y) to (N,M).
	// In the first case the overall path is the forward path
	// to (u,v) followed by the backward path to (N,M).
	// In the second case the path is the backward path to (x,y)
	// followed by the forward path to (x,y) from (0,0).

	// Look for some special cases to avoid computing either of these paths.
	if x == u {
		// "babaab" "cccaba"
		// already patched together
		lcs := e.forwardlcs(df, kf)
		lcs = append(lcs, e.backwardlcs(db, kb)...)
		return lcs.sort()
	}

	// is (u-1,v) or (u,v-1) labelled df-1?
	// if so, that forward df-1-path plus a horizontal or vertical edge
	// is the df-path to (u,v), then plus the db-path to (N,M)
	if u > 0 && ok(df-1, u-1-v) && e.vf.get(df-1, u-1-v) == u-1 {
		//  "aabbab" "cbcabc"
		lcs := e.forwardlcs(df-1, u-1-v)
		lcs = append(lcs, e.backwardlcs(db, kb)...)
		return lcs.sort()
	}
	if v > 0 && ok(df-1, (u-(v-1))) && e.vf.get(df-1, u-(v-1)) == u {
		//  "abaabb" "bcacab"
		lcs := e.forwardlcs(df-1, u-(v-1))
		lcs = append(lcs, e.backwardlcs(db, kb)...)
		return lcs.sort()
	}

	// The path can't possibly contribute to the lcs because it
	// is all horizontal or vertical edges
	if u == 0 || v == 0 || x == e.ux || y == e.uy {
		// "abaabb" "abaaaa"
		if u == 0 || v == 0 {
			return e.backwardlcs(db, kb)
		}
		return e.forwardlcs(df, kf)
	}

	// is (x+1,y) or (x,y+1) labelled db-1?
	if x+1 <= e.ux && ok(db-1, x+1-y-e.delta) && e.vb.get(db-1, x+1-y-e.delta) == x+1 {
		// "bababb" "baaabb"
		lcs := e.backwardlcs(db-1, kb+1)
		lcs = append(lcs, e.forwardlcs(df, kf)...)
		return lcs.sort()
	}
	if y+1 <= e.uy && ok(db-1, x-(y+1)-e.delta) && e.vb.get(db-1, x-(y+1)-e.delta) == x {
		// "abbbaa" "cabacc"
		lcs := e.backwardlcs(db-1, kb-1)
		lcs = append(lcs, e.forwardlcs(df, kf)...)
		return lcs.sort()
	}

	// need to compute another path
	// "aabbaa" "aacaba"
	lcs := e.backwardlcs(db, kb)
	oldx, oldy := e.ux, e.uy
	e.ux = u
	e.uy = v
	lcs = append(lcs, forward(e)...)
	e.ux, e.uy = oldx, oldy
	return lcs.sort()
}