1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vulncheck
import (
"bytes"
"context"
"go/token"
"go/types"
"sort"
"strings"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/callgraph/cha"
"golang.org/x/tools/go/callgraph/vta"
"golang.org/x/tools/go/packages"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/vuln/internal/osv"
"golang.org/x/vuln/internal/semver"
"golang.org/x/tools/go/ssa"
)
// buildSSA creates an ssa representation for pkgs. Returns
// the ssa program encapsulating the packages and top level
// ssa packages corresponding to pkgs.
func buildSSA(pkgs []*packages.Package, fset *token.FileSet) (*ssa.Program, []*ssa.Package) {
prog := ssa.NewProgram(fset, ssa.InstantiateGenerics)
imports := make(map[*packages.Package]*ssa.Package)
var createImports func(map[string]*packages.Package)
createImports = func(pkgs map[string]*packages.Package) {
for _, p := range pkgs {
if _, ok := imports[p]; !ok {
i := prog.CreatePackage(p.Types, p.Syntax, p.TypesInfo, true)
imports[p] = i
createImports(p.Imports)
}
}
}
for _, tp := range pkgs {
createImports(tp.Imports)
}
var ssaPkgs []*ssa.Package
for _, tp := range pkgs {
if sp, ok := imports[tp]; ok {
ssaPkgs = append(ssaPkgs, sp)
} else {
sp := prog.CreatePackage(tp.Types, tp.Syntax, tp.TypesInfo, false)
ssaPkgs = append(ssaPkgs, sp)
}
}
prog.Build()
return prog, ssaPkgs
}
// callGraph builds a call graph of prog based on VTA analysis.
func callGraph(ctx context.Context, prog *ssa.Program, entries []*ssa.Function) (*callgraph.Graph, error) {
entrySlice := make(map[*ssa.Function]bool)
for _, e := range entries {
entrySlice[e] = true
}
if err := ctx.Err(); err != nil { // cancelled?
return nil, err
}
initial := cha.CallGraph(prog)
allFuncs := ssautil.AllFunctions(prog)
fslice := forwardSlice(entrySlice, initial)
// Keep only actually linked functions.
pruneSet(fslice, allFuncs)
if err := ctx.Err(); err != nil { // cancelled?
return nil, err
}
vtaCg := vta.CallGraph(fslice, initial)
// Repeat the process once more, this time using
// the produced VTA call graph as the base graph.
fslice = forwardSlice(entrySlice, vtaCg)
pruneSet(fslice, allFuncs)
if err := ctx.Err(); err != nil { // cancelled?
return nil, err
}
cg := vta.CallGraph(fslice, vtaCg)
cg.DeleteSyntheticNodes()
return cg, nil
}
// dbTypeFormat formats the name of t according how types
// are encoded in vulnerability database:
// - pointer designation * is skipped
// - full path prefix is skipped as well
func dbTypeFormat(t types.Type) string {
switch tt := t.(type) {
case *types.Pointer:
return dbTypeFormat(tt.Elem())
case *types.Named:
return tt.Obj().Name()
default:
return types.TypeString(t, func(p *types.Package) string { return "" })
}
}
// dbFuncName computes a function name consistent with the namings used in vulnerability
// databases. Effectively, a qualified name of a function local to its enclosing package.
// If a receiver is a pointer, this information is not encoded in the resulting name. If
// a function has type argument/parameter, this information is omitted. The name of
// anonymous functions is simply "". The function names are unique subject to the enclosing
// package, but not globally.
//
// Examples:
//
// func (a A) foo (...) {...} -> A.foo
// func foo(...) {...} -> foo
// func (b *B) bar (...) {...} -> B.bar
// func (c C[T]) do(...) {...} -> C.do
func dbFuncName(f *ssa.Function) string {
selectBound := func(f *ssa.Function) types.Type {
// If f is a "bound" function introduced by ssa for a given type, return the type.
// When "f" is a "bound" function, it will have 1 free variable of that type within
// the function. This is subject to change when ssa changes.
if len(f.FreeVars) == 1 && strings.HasPrefix(f.Synthetic, "bound ") {
return f.FreeVars[0].Type()
}
return nil
}
selectThunk := func(f *ssa.Function) types.Type {
// If f is a "thunk" function introduced by ssa for a given type, return the type.
// When "f" is a "thunk" function, the first parameter will have that type within
// the function. This is subject to change when ssa changes.
params := f.Signature.Params() // params.Len() == 1 then params != nil.
if strings.HasPrefix(f.Synthetic, "thunk ") && params.Len() >= 1 {
if first := params.At(0); first != nil {
return first.Type()
}
}
return nil
}
var qprefix string
if recv := f.Signature.Recv(); recv != nil {
qprefix = dbTypeFormat(recv.Type())
} else if btype := selectBound(f); btype != nil {
qprefix = dbTypeFormat(btype)
} else if ttype := selectThunk(f); ttype != nil {
qprefix = dbTypeFormat(ttype)
}
if qprefix == "" {
return funcName(f)
}
return qprefix + "." + funcName(f)
}
// funcName returns the name of the ssa function f.
// It is f.Name() without additional type argument
// information in case of generics.
func funcName(f *ssa.Function) string {
n, _, _ := strings.Cut(f.Name(), "[")
return n
}
// memberFuncs returns functions associated with the `member`:
// 1) `member` itself if `member` is a function
// 2) `member` methods if `member` is a type
// 3) empty list otherwise
func memberFuncs(member ssa.Member, prog *ssa.Program) []*ssa.Function {
switch t := member.(type) {
case *ssa.Type:
methods := typeutil.IntuitiveMethodSet(t.Type(), &prog.MethodSets)
var funcs []*ssa.Function
for _, m := range methods {
if f := prog.MethodValue(m); f != nil {
funcs = append(funcs, f)
}
}
return funcs
case *ssa.Function:
return []*ssa.Function{t}
default:
return nil
}
}
// funcPosition gives the position of `f`. Returns empty token.Position
// if no file information on `f` is available.
func funcPosition(f *ssa.Function) *token.Position {
pos := f.Prog.Fset.Position(f.Pos())
return &pos
}
// instrPosition gives the position of `instr`. Returns empty token.Position
// if no file information on `instr` is available.
func instrPosition(instr ssa.Instruction) *token.Position {
pos := instr.Parent().Prog.Fset.Position(instr.Pos())
return &pos
}
func resolved(call ssa.CallInstruction) bool {
if call == nil {
return true
}
return call.Common().StaticCallee() != nil
}
func callRecvType(call ssa.CallInstruction) string {
if !call.Common().IsInvoke() {
return ""
}
buf := new(bytes.Buffer)
types.WriteType(buf, call.Common().Value.Type(), nil)
return buf.String()
}
func funcRecvType(f *ssa.Function) string {
v := f.Signature.Recv()
if v == nil {
return ""
}
buf := new(bytes.Buffer)
types.WriteType(buf, v.Type(), nil)
return buf.String()
}
func FixedVersion(modulePath, version string, affected []osv.Affected) string {
fixed := earliestValidFix(modulePath, version, affected)
// Add "v" prefix if one does not exist. moduleVersionString
// will later on replace it with "go" if needed.
if fixed != "" && !strings.HasPrefix(fixed, "v") {
fixed = "v" + fixed
}
return fixed
}
// earliestValidFix returns the earliest fix for version of modulePath that
// itself is not vulnerable in affected.
//
// Suppose we have a version "v1.0.0" and we use {...} to denote different
// affected regions. Assume for simplicity that all affected apply to the
// same input modulePath.
//
// {[v0.1.0, v0.1.9), [v1.0.0, v2.0.0)} -> v2.0.0
// {[v1.0.0, v1.5.0), [v2.0.0, v2.1.0}, {[v1.4.0, v1.6.0)} -> v2.1.0
func earliestValidFix(modulePath, version string, affected []osv.Affected) string {
var moduleAffected []osv.Affected
for _, a := range affected {
if a.Module.Path == modulePath {
moduleAffected = append(moduleAffected, a)
}
}
vFixes := validFixes(version, moduleAffected)
for _, fix := range vFixes {
if !fixNegated(fix, moduleAffected) {
return fix
}
}
return ""
}
// validFixes computes all fixes for version in affected and
// returns them sorted increasingly. Assumes that all affected
// apply to the same module.
func validFixes(version string, affected []osv.Affected) []string {
var fixes []string
for _, a := range affected {
for _, r := range a.Ranges {
if r.Type != osv.RangeTypeSemver {
continue
}
for _, e := range r.Events {
fix := e.Fixed
if fix != "" && semver.Less(version, fix) {
fixes = append(fixes, fix)
}
}
}
}
sort.SliceStable(fixes, func(i, j int) bool { return semver.Less(fixes[i], fixes[j]) })
return fixes
}
// fixNegated checks if fix is negated to by a re-introduction
// of a vulnerability in affected. Assumes that all affected apply
// to the same module.
func fixNegated(fix string, affected []osv.Affected) bool {
for _, a := range affected {
for _, r := range a.Ranges {
if semver.ContainsSemver(r, fix) {
return true
}
}
}
return false
}
func modPath(mod *packages.Module) string {
if mod.Replace != nil {
return mod.Replace.Path
}
return mod.Path
}
func modVersion(mod *packages.Module) string {
if mod.Replace != nil {
return mod.Replace.Version
}
return mod.Version
}
|