File: witness.go

package info (click to toggle)
golang-golang-x-vuln 1.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,400 kB
  • sloc: sh: 161; asm: 40; makefile: 7
file content (447 lines) | stat: -rw-r--r-- 12,748 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vulncheck

import (
	"container/list"
	"fmt"
	"go/ast"
	"go/token"
	"sort"
	"strconv"
	"strings"
	"sync"
	"unicode"

	"golang.org/x/tools/go/packages"
)

// CallStack is a call stack starting with a client
// function or method and ending with a call to a
// vulnerable symbol.
type CallStack []StackEntry

// StackEntry is an element of a call stack.
type StackEntry struct {
	// Function whose frame is on the stack.
	Function *FuncNode

	// Call is the call site inducing the next stack frame.
	// nil when the frame represents the last frame in the stack.
	Call *CallSite
}

// sourceCallstacks returns representative call stacks for each
// vulnerability in res. The returned call stacks are heuristically
// ordered by how seemingly easy is to understand them: shorter
// call stacks with less dynamic call sites appear earlier in the
// returned slices.
//
// sourceCallstacks performs a breadth-first search of res.CallGraph
// starting at the vulnerable symbol and going up until reaching an entry
// function or method in res.CallGraph.Entries. During this search,
// each function is visited at most once to avoid potential
// exponential explosion. Hence, not all call stacks are analyzed.
func sourceCallstacks(res *Result) map[*Vuln]CallStack {
	var (
		wg sync.WaitGroup
		mu sync.Mutex
	)
	stackPerVuln := make(map[*Vuln]CallStack)
	for _, vuln := range res.Vulns {
		vuln := vuln
		wg.Add(1)
		go func() {
			cs := sourceCallstack(vuln, res)
			mu.Lock()
			stackPerVuln[vuln] = cs
			mu.Unlock()
			wg.Done()
		}()
	}
	wg.Wait()

	updateInitPositions(stackPerVuln)
	return stackPerVuln
}

// sourceCallstack finds a representative call stack for vuln.
// This is a shortest unique call stack with the least
// number of dynamic call sites.
func sourceCallstack(vuln *Vuln, res *Result) CallStack {
	vulnSink := vuln.CallSink
	if vulnSink == nil {
		return nil
	}

	entries := make(map[*FuncNode]bool)
	for _, e := range res.EntryFunctions {
		entries[e] = true
	}

	seen := make(map[*FuncNode]bool)

	// Do a BFS from the vuln sink to the entry points
	// and find the representative call stack. This is
	// the shortest call stack that goes through the
	// least number of dynamic call sites. We first
	// collect all candidate call stacks of the shortest
	// length and then pick the best one accordingly.
	var candidates []CallStack
	candDepth := 0
	queue := list.New()
	queue.PushBack(&callChain{f: vulnSink})

	// We want to avoid call stacks that go through
	// other vulnerable symbols of the same package
	// for the same vulnerability. In other words,
	// we want unique call stacks.
	skipSymbols := make(map[*FuncNode]bool)
	for _, v := range res.Vulns {
		if v.CallSink != nil && v != vuln &&
			v.OSV == vuln.OSV && v.Package == vuln.Package {
			skipSymbols[v.CallSink] = true
		}
	}

	for queue.Len() > 0 {
		front := queue.Front()
		c := front.Value.(*callChain)
		queue.Remove(front)

		f := c.f
		if seen[f] {
			continue
		}
		seen[f] = true

		// Pick a single call site for each function in determinstic order.
		// A single call site is sufficient as we visit a function only once.
		for _, cs := range callsites(f.CallSites, seen) {
			nStack := &callChain{f: cs.Parent, call: cs, child: c}
			if !skipSymbols[cs.Parent] {
				queue.PushBack(nStack)
			}

			if entries[cs.Parent] {
				ns := nStack.CallStack()
				if len(candidates) == 0 || len(ns) == candDepth {
					// The case where we either have not identified
					// any call stacks or just found one of the same
					// length as the previous ones.
					candidates = append(candidates, ns)
					candDepth = len(ns)
				} else {
					// We just found a candidate call stack whose
					// length is greater than what we previously
					// found. We can thus safely disregard this
					// call stack and stop searching since we won't
					// be able to find any better candidates.
					queue.Init() // clear the list, effectively exiting the outer loop
				}
			}
		}
	}

	// Sort candidate call stacks by their number of dynamic call
	// sites and return the first one.
	sort.SliceStable(candidates, func(i int, j int) bool {
		s1, s2 := candidates[i], candidates[j]
		if w1, w2 := weight(s1), weight(s2); w1 != w2 {
			return w1 < w2
		}

		// At this point, the stableness/determinism of
		// sorting is guaranteed by the determinism of
		// the underlying call graph and the call stack
		// search algorithm.
		return true
	})
	if len(candidates) == 0 {
		return nil
	}
	return candidates[0]
}

// callsites picks a call site from sites for each non-visited function.
// For each such function, the smallest (posLess) call site is chosen. The
// returned slice is sorted by caller functions (funcLess). Assumes callee
// of each call site is the same.
func callsites(sites []*CallSite, visited map[*FuncNode]bool) []*CallSite {
	minCs := make(map[*FuncNode]*CallSite)
	for _, cs := range sites {
		if visited[cs.Parent] {
			continue
		}
		if csLess(cs, minCs[cs.Parent]) {
			minCs[cs.Parent] = cs
		}
	}

	var fs []*FuncNode
	for _, cs := range minCs {
		fs = append(fs, cs.Parent)
	}
	sort.SliceStable(fs, func(i, j int) bool { return funcLess(fs[i], fs[j]) })

	var css []*CallSite
	for _, f := range fs {
		css = append(css, minCs[f])
	}
	return css
}

// callChain models a chain of function calls.
type callChain struct {
	call  *CallSite // nil for entry points
	f     *FuncNode
	child *callChain
}

// CallStack converts callChain to CallStack type.
func (c *callChain) CallStack() CallStack {
	if c == nil {
		return nil
	}
	return append(CallStack{StackEntry{Function: c.f, Call: c.call}}, c.child.CallStack()...)
}

// weight computes an approximate measure of how easy is to understand the call
// stack when presented to the client as a witness. The smaller the value, the more
// understandable the stack is. Currently defined as the number of unresolved
// call sites in the stack.
func weight(stack CallStack) int {
	w := 0
	for _, e := range stack {
		if e.Call != nil && !e.Call.Resolved {
			w += 1
		}
	}
	return w
}

// csLess compares two call sites by their locations and, if needed,
// their string representation.
func csLess(cs1, cs2 *CallSite) bool {
	if cs2 == nil {
		return true
	}

	// fast code path
	if p1, p2 := cs1.Pos, cs2.Pos; p1 != nil && p2 != nil {
		if posLess(*p1, *p2) {
			return true
		}
		if posLess(*p2, *p1) {
			return false
		}
		// for sanity, should not occur in practice
		return fmt.Sprintf("%v.%v", cs1.RecvType, cs2.Name) < fmt.Sprintf("%v.%v", cs2.RecvType, cs2.Name)
	}

	// code path rarely exercised
	if cs2.Pos == nil {
		return true
	}
	if cs1.Pos == nil {
		return false
	}
	// should very rarely occur in practice
	return fmt.Sprintf("%v.%v", cs1.RecvType, cs2.Name) < fmt.Sprintf("%v.%v", cs2.RecvType, cs2.Name)
}

// posLess compares two positions by their line and column number,
// and filename if needed.
func posLess(p1, p2 token.Position) bool {
	if p1.Line < p2.Line {
		return true
	}
	if p2.Line < p1.Line {
		return false
	}

	if p1.Column < p2.Column {
		return true
	}
	if p2.Column < p1.Column {
		return false
	}

	return strings.Compare(p1.Filename, p2.Filename) == -1
}

// funcLess compares two function nodes by locations of
// corresponding functions and, if needed, their string representation.
func funcLess(f1, f2 *FuncNode) bool {
	if p1, p2 := f1.Pos, f2.Pos; p1 != nil && p2 != nil {
		if posLess(*p1, *p2) {
			return true
		}
		if posLess(*p2, *p1) {
			return false
		}
		// for sanity, should not occur in practice
		return f1.String() < f2.String()
	}

	if f2.Pos == nil {
		return true
	}
	if f1.Pos == nil {
		return false
	}
	// should happen only for inits
	return f1.String() < f2.String()
}

// updateInitPositions populates non-existing positions of init functions
// and their respective calls in callStacks (see #51575).
func updateInitPositions(callStacks map[*Vuln]CallStack) {
	for _, cs := range callStacks {
		for i := range cs {
			updateInitPosition(&cs[i])
			if i != len(cs)-1 {
				updateInitCallPosition(&cs[i], cs[i+1])
			}
		}
	}
}

// updateInitCallPosition updates the position of a call to init in a stack frame, if
// one already does not exist:
//
//	P1.init -> P2.init: position of call to P2.init is the position of "import P2"
//	statement in P1
//
//	P.init -> P.init#d: P.init is an implicit init. We say it calls the explicit
//	P.init#d at the place of "package P" statement.
func updateInitCallPosition(curr *StackEntry, next StackEntry) {
	call := curr.Call
	if !isInit(next.Function) || (call.Pos != nil && call.Pos.IsValid()) {
		// Skip non-init functions and inits whose call site position is available.
		return
	}

	var pos token.Position
	if curr.Function.Name == "init" && curr.Function.Package == next.Function.Package {
		// We have implicit P.init calling P.init#d. Set the call position to
		// be at "package P" statement position.
		pos = packageStatementPos(curr.Function.Package)
	} else {
		// Choose the beginning of the import statement as the position.
		pos = importStatementPos(curr.Function.Package, next.Function.Package.PkgPath)
	}

	call.Pos = &pos
}

func importStatementPos(pkg *packages.Package, importPath string) token.Position {
	var importSpec *ast.ImportSpec
spec:
	for _, f := range pkg.Syntax {
		for _, impSpec := range f.Imports {
			// Import spec paths have quotation marks.
			impSpecPath, err := strconv.Unquote(impSpec.Path.Value)
			if err != nil {
				panic(fmt.Sprintf("import specification: package path has no quotation marks: %v", err))
			}
			if impSpecPath == importPath {
				importSpec = impSpec
				break spec
			}
		}
	}

	if importSpec == nil {
		// for sanity, in case of a wild call graph imprecision
		return token.Position{}
	}

	// Choose the beginning of the import statement as the position.
	return pkg.Fset.Position(importSpec.Pos())
}

func packageStatementPos(pkg *packages.Package) token.Position {
	if len(pkg.Syntax) == 0 {
		return token.Position{}
	}
	// Choose beginning of the package statement as the position. Pick
	// the first file since it is as good as any.
	return pkg.Fset.Position(pkg.Syntax[0].Package)
}

// updateInitPosition updates the position of P.init function in a stack frame if one
// is not available. The new position is the position of the "package P" statement.
func updateInitPosition(se *StackEntry) {
	fun := se.Function
	if !isInit(fun) || (fun.Pos != nil && fun.Pos.IsValid()) {
		// Skip non-init functions and inits whose position is available.
		return
	}

	pos := packageStatementPos(fun.Package)
	fun.Pos = &pos
}

func isInit(f *FuncNode) bool {
	// A source init function, or anonymous functions used in inits, will
	// be named "init#x" by vulncheck (more precisely, ssa), where x is a
	// positive integer. Implicit inits are named simply "init".
	return f.Name == "init" || strings.HasPrefix(f.Name, "init#")
}

// binaryCallstacks computes representative call stacks for binary results.
func binaryCallstacks(vr *Result) map[*Vuln]CallStack {
	callstacks := map[*Vuln]CallStack{}
	for _, vv := range uniqueVulns(vr.Vulns) {
		f := &FuncNode{Package: vv.Package, Name: vv.Symbol}
		parts := strings.Split(vv.Symbol, ".")
		if len(parts) != 1 {
			f.RecvType = parts[0]
			f.Name = parts[1]
		}
		callstacks[vv] = CallStack{StackEntry{Function: f}}
	}
	return callstacks
}

// uniqueVulns does for binary mode what sourceCallstacks does for source mode.
// It tries not to report redundant symbols. Since there are no call stacks in
// binary mode, the following approximate approach is used. Do not report unexported
// symbols for a <vulnID, pkg, module> triple if there are some exported symbols.
// Otherwise, report all unexported symbols to avoid not reporting anything.
func uniqueVulns(vulns []*Vuln) []*Vuln {
	type key struct {
		id  string
		pkg string
		mod string
	}
	hasExported := make(map[key]bool)
	for _, v := range vulns {
		if isExported(v.Symbol) {
			k := key{id: v.OSV.ID, pkg: v.Package.PkgPath, mod: v.Package.Module.Path}
			hasExported[k] = true
		}
	}

	var uniques []*Vuln
	for _, v := range vulns {
		k := key{id: v.OSV.ID, pkg: v.Package.PkgPath, mod: v.Package.Module.Path}
		if isExported(v.Symbol) || !hasExported[k] {
			uniques = append(uniques, v)
		}
	}
	return uniques
}

// isExported checks if the symbol is exported. Assumes that the
// symbol is of the form "identifier" or "identifier1.identifier2".
func isExported(symbol string) bool {
	parts := strings.Split(symbol, ".")
	if len(parts) == 1 {
		return unicode.IsUpper(rune(symbol[0]))
	}
	return unicode.IsUpper(rune(parts[1][0]))
}