1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vulncheck
import (
"container/list"
"fmt"
"go/ast"
"go/token"
"sort"
"strconv"
"strings"
"sync"
"unicode"
"golang.org/x/tools/go/packages"
)
// CallStack is a call stack starting with a client
// function or method and ending with a call to a
// vulnerable symbol.
type CallStack []StackEntry
// StackEntry is an element of a call stack.
type StackEntry struct {
// Function whose frame is on the stack.
Function *FuncNode
// Call is the call site inducing the next stack frame.
// nil when the frame represents the last frame in the stack.
Call *CallSite
}
// sourceCallstacks returns representative call stacks for each
// vulnerability in res. The returned call stacks are heuristically
// ordered by how seemingly easy is to understand them: shorter
// call stacks with less dynamic call sites appear earlier in the
// returned slices.
//
// sourceCallstacks performs a breadth-first search of res.CallGraph
// starting at the vulnerable symbol and going up until reaching an entry
// function or method in res.CallGraph.Entries. During this search,
// each function is visited at most once to avoid potential
// exponential explosion. Hence, not all call stacks are analyzed.
func sourceCallstacks(res *Result) map[*Vuln]CallStack {
var (
wg sync.WaitGroup
mu sync.Mutex
)
stackPerVuln := make(map[*Vuln]CallStack)
for _, vuln := range res.Vulns {
vuln := vuln
wg.Add(1)
go func() {
cs := sourceCallstack(vuln, res)
mu.Lock()
stackPerVuln[vuln] = cs
mu.Unlock()
wg.Done()
}()
}
wg.Wait()
updateInitPositions(stackPerVuln)
return stackPerVuln
}
// sourceCallstack finds a representative call stack for vuln.
// This is a shortest unique call stack with the least
// number of dynamic call sites.
func sourceCallstack(vuln *Vuln, res *Result) CallStack {
vulnSink := vuln.CallSink
if vulnSink == nil {
return nil
}
entries := make(map[*FuncNode]bool)
for _, e := range res.EntryFunctions {
entries[e] = true
}
seen := make(map[*FuncNode]bool)
// Do a BFS from the vuln sink to the entry points
// and find the representative call stack. This is
// the shortest call stack that goes through the
// least number of dynamic call sites. We first
// collect all candidate call stacks of the shortest
// length and then pick the best one accordingly.
var candidates []CallStack
candDepth := 0
queue := list.New()
queue.PushBack(&callChain{f: vulnSink})
// We want to avoid call stacks that go through
// other vulnerable symbols of the same package
// for the same vulnerability. In other words,
// we want unique call stacks.
skipSymbols := make(map[*FuncNode]bool)
for _, v := range res.Vulns {
if v.CallSink != nil && v != vuln &&
v.OSV == vuln.OSV && v.Package == vuln.Package {
skipSymbols[v.CallSink] = true
}
}
for queue.Len() > 0 {
front := queue.Front()
c := front.Value.(*callChain)
queue.Remove(front)
f := c.f
if seen[f] {
continue
}
seen[f] = true
// Pick a single call site for each function in determinstic order.
// A single call site is sufficient as we visit a function only once.
for _, cs := range callsites(f.CallSites, seen) {
nStack := &callChain{f: cs.Parent, call: cs, child: c}
if !skipSymbols[cs.Parent] {
queue.PushBack(nStack)
}
if entries[cs.Parent] {
ns := nStack.CallStack()
if len(candidates) == 0 || len(ns) == candDepth {
// The case where we either have not identified
// any call stacks or just found one of the same
// length as the previous ones.
candidates = append(candidates, ns)
candDepth = len(ns)
} else {
// We just found a candidate call stack whose
// length is greater than what we previously
// found. We can thus safely disregard this
// call stack and stop searching since we won't
// be able to find any better candidates.
queue.Init() // clear the list, effectively exiting the outer loop
}
}
}
}
// Sort candidate call stacks by their number of dynamic call
// sites and return the first one.
sort.SliceStable(candidates, func(i int, j int) bool {
s1, s2 := candidates[i], candidates[j]
if w1, w2 := weight(s1), weight(s2); w1 != w2 {
return w1 < w2
}
// At this point, the stableness/determinism of
// sorting is guaranteed by the determinism of
// the underlying call graph and the call stack
// search algorithm.
return true
})
if len(candidates) == 0 {
return nil
}
return candidates[0]
}
// callsites picks a call site from sites for each non-visited function.
// For each such function, the smallest (posLess) call site is chosen. The
// returned slice is sorted by caller functions (funcLess). Assumes callee
// of each call site is the same.
func callsites(sites []*CallSite, visited map[*FuncNode]bool) []*CallSite {
minCs := make(map[*FuncNode]*CallSite)
for _, cs := range sites {
if visited[cs.Parent] {
continue
}
if csLess(cs, minCs[cs.Parent]) {
minCs[cs.Parent] = cs
}
}
var fs []*FuncNode
for _, cs := range minCs {
fs = append(fs, cs.Parent)
}
sort.SliceStable(fs, func(i, j int) bool { return funcLess(fs[i], fs[j]) })
var css []*CallSite
for _, f := range fs {
css = append(css, minCs[f])
}
return css
}
// callChain models a chain of function calls.
type callChain struct {
call *CallSite // nil for entry points
f *FuncNode
child *callChain
}
// CallStack converts callChain to CallStack type.
func (c *callChain) CallStack() CallStack {
if c == nil {
return nil
}
return append(CallStack{StackEntry{Function: c.f, Call: c.call}}, c.child.CallStack()...)
}
// weight computes an approximate measure of how easy is to understand the call
// stack when presented to the client as a witness. The smaller the value, the more
// understandable the stack is. Currently defined as the number of unresolved
// call sites in the stack.
func weight(stack CallStack) int {
w := 0
for _, e := range stack {
if e.Call != nil && !e.Call.Resolved {
w += 1
}
}
return w
}
// csLess compares two call sites by their locations and, if needed,
// their string representation.
func csLess(cs1, cs2 *CallSite) bool {
if cs2 == nil {
return true
}
// fast code path
if p1, p2 := cs1.Pos, cs2.Pos; p1 != nil && p2 != nil {
if posLess(*p1, *p2) {
return true
}
if posLess(*p2, *p1) {
return false
}
// for sanity, should not occur in practice
return fmt.Sprintf("%v.%v", cs1.RecvType, cs2.Name) < fmt.Sprintf("%v.%v", cs2.RecvType, cs2.Name)
}
// code path rarely exercised
if cs2.Pos == nil {
return true
}
if cs1.Pos == nil {
return false
}
// should very rarely occur in practice
return fmt.Sprintf("%v.%v", cs1.RecvType, cs2.Name) < fmt.Sprintf("%v.%v", cs2.RecvType, cs2.Name)
}
// posLess compares two positions by their line and column number,
// and filename if needed.
func posLess(p1, p2 token.Position) bool {
if p1.Line < p2.Line {
return true
}
if p2.Line < p1.Line {
return false
}
if p1.Column < p2.Column {
return true
}
if p2.Column < p1.Column {
return false
}
return strings.Compare(p1.Filename, p2.Filename) == -1
}
// funcLess compares two function nodes by locations of
// corresponding functions and, if needed, their string representation.
func funcLess(f1, f2 *FuncNode) bool {
if p1, p2 := f1.Pos, f2.Pos; p1 != nil && p2 != nil {
if posLess(*p1, *p2) {
return true
}
if posLess(*p2, *p1) {
return false
}
// for sanity, should not occur in practice
return f1.String() < f2.String()
}
if f2.Pos == nil {
return true
}
if f1.Pos == nil {
return false
}
// should happen only for inits
return f1.String() < f2.String()
}
// updateInitPositions populates non-existing positions of init functions
// and their respective calls in callStacks (see #51575).
func updateInitPositions(callStacks map[*Vuln]CallStack) {
for _, cs := range callStacks {
for i := range cs {
updateInitPosition(&cs[i])
if i != len(cs)-1 {
updateInitCallPosition(&cs[i], cs[i+1])
}
}
}
}
// updateInitCallPosition updates the position of a call to init in a stack frame, if
// one already does not exist:
//
// P1.init -> P2.init: position of call to P2.init is the position of "import P2"
// statement in P1
//
// P.init -> P.init#d: P.init is an implicit init. We say it calls the explicit
// P.init#d at the place of "package P" statement.
func updateInitCallPosition(curr *StackEntry, next StackEntry) {
call := curr.Call
if !isInit(next.Function) || (call.Pos != nil && call.Pos.IsValid()) {
// Skip non-init functions and inits whose call site position is available.
return
}
var pos token.Position
if curr.Function.Name == "init" && curr.Function.Package == next.Function.Package {
// We have implicit P.init calling P.init#d. Set the call position to
// be at "package P" statement position.
pos = packageStatementPos(curr.Function.Package)
} else {
// Choose the beginning of the import statement as the position.
pos = importStatementPos(curr.Function.Package, next.Function.Package.PkgPath)
}
call.Pos = &pos
}
func importStatementPos(pkg *packages.Package, importPath string) token.Position {
var importSpec *ast.ImportSpec
spec:
for _, f := range pkg.Syntax {
for _, impSpec := range f.Imports {
// Import spec paths have quotation marks.
impSpecPath, err := strconv.Unquote(impSpec.Path.Value)
if err != nil {
panic(fmt.Sprintf("import specification: package path has no quotation marks: %v", err))
}
if impSpecPath == importPath {
importSpec = impSpec
break spec
}
}
}
if importSpec == nil {
// for sanity, in case of a wild call graph imprecision
return token.Position{}
}
// Choose the beginning of the import statement as the position.
return pkg.Fset.Position(importSpec.Pos())
}
func packageStatementPos(pkg *packages.Package) token.Position {
if len(pkg.Syntax) == 0 {
return token.Position{}
}
// Choose beginning of the package statement as the position. Pick
// the first file since it is as good as any.
return pkg.Fset.Position(pkg.Syntax[0].Package)
}
// updateInitPosition updates the position of P.init function in a stack frame if one
// is not available. The new position is the position of the "package P" statement.
func updateInitPosition(se *StackEntry) {
fun := se.Function
if !isInit(fun) || (fun.Pos != nil && fun.Pos.IsValid()) {
// Skip non-init functions and inits whose position is available.
return
}
pos := packageStatementPos(fun.Package)
fun.Pos = &pos
}
func isInit(f *FuncNode) bool {
// A source init function, or anonymous functions used in inits, will
// be named "init#x" by vulncheck (more precisely, ssa), where x is a
// positive integer. Implicit inits are named simply "init".
return f.Name == "init" || strings.HasPrefix(f.Name, "init#")
}
// binaryCallstacks computes representative call stacks for binary results.
func binaryCallstacks(vr *Result) map[*Vuln]CallStack {
callstacks := map[*Vuln]CallStack{}
for _, vv := range uniqueVulns(vr.Vulns) {
f := &FuncNode{Package: vv.Package, Name: vv.Symbol}
parts := strings.Split(vv.Symbol, ".")
if len(parts) != 1 {
f.RecvType = parts[0]
f.Name = parts[1]
}
callstacks[vv] = CallStack{StackEntry{Function: f}}
}
return callstacks
}
// uniqueVulns does for binary mode what sourceCallstacks does for source mode.
// It tries not to report redundant symbols. Since there are no call stacks in
// binary mode, the following approximate approach is used. Do not report unexported
// symbols for a <vulnID, pkg, module> triple if there are some exported symbols.
// Otherwise, report all unexported symbols to avoid not reporting anything.
func uniqueVulns(vulns []*Vuln) []*Vuln {
type key struct {
id string
pkg string
mod string
}
hasExported := make(map[key]bool)
for _, v := range vulns {
if isExported(v.Symbol) {
k := key{id: v.OSV.ID, pkg: v.Package.PkgPath, mod: v.Package.Module.Path}
hasExported[k] = true
}
}
var uniques []*Vuln
for _, v := range vulns {
k := key{id: v.OSV.ID, pkg: v.Package.PkgPath, mod: v.Package.Module.Path}
if isExported(v.Symbol) || !hasExported[k] {
uniques = append(uniques, v)
}
}
return uniques
}
// isExported checks if the symbol is exported. Assumes that the
// symbol is of the form "identifier" or "identifier1.identifier2".
func isExported(symbol string) bool {
parts := strings.Split(symbol, ".")
if len(parts) == 1 {
return unicode.IsUpper(rune(symbol[0]))
}
return unicode.IsUpper(rune(parts[1][0]))
}
|