1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blas32
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/gonum"
)
var blas32 blas.Float32 = gonum.Implementation{}
// Use sets the BLAS float32 implementation to be used by subsequent BLAS calls.
// The default implementation is
// gonum.org/v1/gonum/blas/gonum.Implementation.
func Use(b blas.Float32) {
blas32 = b
}
// Implementation returns the current BLAS float32 implementation.
//
// Implementation allows direct calls to the current the BLAS float32 implementation
// giving finer control of parameters.
func Implementation() blas.Float32 {
return blas32
}
// Vector represents a vector with an associated element increment.
type Vector struct {
N int
Inc int
Data []float32
}
// General represents a matrix using the conventional storage scheme.
type General struct {
Rows, Cols int
Stride int
Data []float32
}
// Band represents a band matrix using the band storage scheme.
type Band struct {
Rows, Cols int
KL, KU int
Stride int
Data []float32
}
// Triangular represents a triangular matrix using the conventional storage scheme.
type Triangular struct {
N int
Stride int
Data []float32
Uplo blas.Uplo
Diag blas.Diag
}
// TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularBand struct {
N, K int
Stride int
Data []float32
Uplo blas.Uplo
Diag blas.Diag
}
// TriangularPacked represents a triangular matrix using the packed storage scheme.
type TriangularPacked struct {
N int
Data []float32
Uplo blas.Uplo
Diag blas.Diag
}
// Symmetric represents a symmetric matrix using the conventional storage scheme.
type Symmetric struct {
N int
Stride int
Data []float32
Uplo blas.Uplo
}
// SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricBand struct {
N, K int
Stride int
Data []float32
Uplo blas.Uplo
}
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type SymmetricPacked struct {
N int
Data []float32
Uplo blas.Uplo
}
// Level 1
const (
negInc = "blas32: negative vector increment"
badLength = "blas32: vector length mismatch"
)
// Dot computes the dot product of the two vectors:
//
// \sum_i x[i]*y[i].
//
// Dot will panic if the lengths of x and y do not match.
func Dot(x, y Vector) float32 {
if x.N != y.N {
panic(badLength)
}
return blas32.Sdot(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// DDot computes the dot product of the two vectors:
//
// \sum_i x[i]*y[i].
//
// DDot will panic if the lengths of x and y do not match.
func DDot(x, y Vector) float64 {
if x.N != y.N {
panic(badLength)
}
return blas32.Dsdot(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// SDDot computes the dot product of the two vectors adding a constant:
//
// alpha + \sum_i x[i]*y[i].
//
// SDDot will panic if the lengths of x and y do not match.
func SDDot(alpha float32, x, y Vector) float32 {
if x.N != y.N {
panic(badLength)
}
return blas32.Sdsdot(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Nrm2 computes the Euclidean norm of the vector x:
//
// sqrt(\sum_i x[i]*x[i]).
//
// Nrm2 will panic if the vector increment is negative.
func Nrm2(x Vector) float32 {
if x.Inc < 0 {
panic(negInc)
}
return blas32.Snrm2(x.N, x.Data, x.Inc)
}
// Asum computes the sum of the absolute values of the elements of x:
//
// \sum_i |x[i]|.
//
// Asum will panic if the vector increment is negative.
func Asum(x Vector) float32 {
if x.Inc < 0 {
panic(negInc)
}
return blas32.Sasum(x.N, x.Data, x.Inc)
}
// Iamax returns the index of an element of x with the largest absolute value.
// If there are multiple such indices the earliest is returned.
// Iamax returns -1 if n == 0.
//
// Iamax will panic if the vector increment is negative.
func Iamax(x Vector) int {
if x.Inc < 0 {
panic(negInc)
}
return blas32.Isamax(x.N, x.Data, x.Inc)
}
// Swap exchanges the elements of the two vectors:
//
// x[i], y[i] = y[i], x[i] for all i.
//
// Swap will panic if the lengths of x and y do not match.
func Swap(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas32.Sswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Copy copies the elements of x into the elements of y:
//
// y[i] = x[i] for all i.
//
// Copy will panic if the lengths of x and y do not match.
func Copy(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas32.Scopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Axpy adds x scaled by alpha to y:
//
// y[i] += alpha*x[i] for all i.
//
// Axpy will panic if the lengths of x and y do not match.
func Axpy(alpha float32, x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas32.Saxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Rotg computes the parameters of a Givens plane rotation so that
//
// ⎡ c s⎤ ⎡a⎤ ⎡r⎤
// ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
//
// where a and b are the Cartesian coordinates of a given point.
// c, s, and r are defined as
//
// r = ±Sqrt(a^2 + b^2),
// c = a/r, the cosine of the rotation angle,
// s = a/r, the sine of the rotation angle,
//
// and z is defined such that
//
// if |a| > |b|, z = s,
// otherwise if c != 0, z = 1/c,
// otherwise z = 1.
func Rotg(a, b float32) (c, s, r, z float32) {
return blas32.Srotg(a, b)
}
// Rotmg computes the modified Givens rotation. See
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
// for more details.
func Rotmg(d1, d2, b1, b2 float32) (p blas.SrotmParams, rd1, rd2, rb1 float32) {
return blas32.Srotmg(d1, d2, b1, b2)
}
// Rot applies a plane transformation to n points represented by the vectors x
// and y:
//
// x[i] = c*x[i] + s*y[i],
// y[i] = -s*x[i] + c*y[i], for all i.
func Rot(n int, x, y Vector, c, s float32) {
blas32.Srot(n, x.Data, x.Inc, y.Data, y.Inc, c, s)
}
// Rotm applies the modified Givens rotation to n points represented by the
// vectors x and y.
func Rotm(n int, x, y Vector, p blas.SrotmParams) {
blas32.Srotm(n, x.Data, x.Inc, y.Data, y.Inc, p)
}
// Scal scales the vector x by alpha:
//
// x[i] *= alpha for all i.
//
// Scal will panic if the vector increment is negative.
func Scal(alpha float32, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
blas32.Sscal(x.N, alpha, x.Data, x.Inc)
}
// Level 2
// Gemv computes
//
// y = alpha * A * x + beta * y if t == blas.NoTrans,
// y = alpha * Aᵀ * x + beta * y if t == blas.Trans or blas.ConjTrans,
//
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Gemv(t blas.Transpose, alpha float32, a General, x Vector, beta float32, y Vector) {
blas32.Sgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Gbmv computes
//
// y = alpha * A * x + beta * y if t == blas.NoTrans,
// y = alpha * Aᵀ * x + beta * y if t == blas.Trans or blas.ConjTrans,
//
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
func Gbmv(t blas.Transpose, alpha float32, a Band, x Vector, beta float32, y Vector) {
blas32.Sgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Trmv computes
//
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix, and x is a vector.
func Trmv(t blas.Transpose, a Triangular, x Vector) {
blas32.Strmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbmv computes
//
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular band matrix, and x is a vector.
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
blas32.Stbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpmv computes
//
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
blas32.Stpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Trsv solves
//
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Trsv(t blas.Transpose, a Triangular, x Vector) {
blas32.Strsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbsv solves
//
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular band matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
blas32.Stbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpsv solves
//
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix in packed format, and x and b are
// vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
blas32.Stpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Symv computes
//
// y = alpha * A * x + beta * y,
//
// where A is an n×n symmetric matrix, x and y are vectors, and alpha and
// beta are scalars.
func Symv(alpha float32, a Symmetric, x Vector, beta float32, y Vector) {
blas32.Ssymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Sbmv performs
//
// y = alpha * A * x + beta * y,
//
// where A is an n×n symmetric band matrix, x and y are vectors, and alpha
// and beta are scalars.
func Sbmv(alpha float32, a SymmetricBand, x Vector, beta float32, y Vector) {
blas32.Ssbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Spmv performs
//
// y = alpha * A * x + beta * y,
//
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha and beta are scalars.
func Spmv(alpha float32, a SymmetricPacked, x Vector, beta float32, y Vector) {
blas32.Sspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Ger performs a rank-1 update
//
// A += alpha * x * yᵀ,
//
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Ger(alpha float32, x, y Vector, a General) {
blas32.Sger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Syr performs a rank-1 update
//
// A += alpha * x * xᵀ,
//
// where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
func Syr(alpha float32, x Vector, a Symmetric) {
blas32.Ssyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
}
// Spr performs the rank-1 update
//
// A += alpha * x * xᵀ,
//
// where A is an n×n symmetric matrix in packed format, x is a vector, and
// alpha is a scalar.
func Spr(alpha float32, x Vector, a SymmetricPacked) {
blas32.Sspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
}
// Syr2 performs a rank-2 update
//
// A += alpha * x * yᵀ + alpha * y * xᵀ,
//
// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
func Syr2(alpha float32, x, y Vector, a Symmetric) {
blas32.Ssyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Spr2 performs a rank-2 update
//
// A += alpha * x * yᵀ + alpha * y * xᵀ,
//
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha is a scalar.
func Spr2(alpha float32, x, y Vector, a SymmetricPacked) {
blas32.Sspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
}
// Level 3
// Gemm computes
//
// C = alpha * A * B + beta * C,
//
// where A, B, and C are dense matrices, and alpha and beta are scalars.
// tA and tB specify whether A or B are transposed.
func Gemm(tA, tB blas.Transpose, alpha float32, a, b General, beta float32, c General) {
var m, n, k int
if tA == blas.NoTrans {
m, k = a.Rows, a.Cols
} else {
m, k = a.Cols, a.Rows
}
if tB == blas.NoTrans {
n = b.Cols
} else {
n = b.Rows
}
blas32.Sgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Symm performs
//
// C = alpha * A * B + beta * C if s == blas.Left,
// C = alpha * B * A + beta * C if s == blas.Right,
//
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
// alpha is a scalar.
func Symm(s blas.Side, alpha float32, a Symmetric, b General, beta float32, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
blas32.Ssymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Syrk performs a symmetric rank-k update
//
// C = alpha * A * Aᵀ + beta * C if t == blas.NoTrans,
// C = alpha * Aᵀ * A + beta * C if t == blas.Trans or blas.ConjTrans,
//
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and
// a k×n matrix otherwise, and alpha and beta are scalars.
func Syrk(t blas.Transpose, alpha float32, a General, beta float32, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas32.Ssyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Syr2k performs a symmetric rank-2k update
//
// C = alpha * A * Bᵀ + alpha * B * Aᵀ + beta * C if t == blas.NoTrans,
// C = alpha * Aᵀ * B + alpha * Bᵀ * A + beta * C if t == blas.Trans or blas.ConjTrans,
//
// where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans
// and k×n matrices otherwise, and alpha and beta are scalars.
func Syr2k(t blas.Transpose, alpha float32, a, b General, beta float32, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas32.Ssyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Trmm performs
//
// B = alpha * A * B if tA == blas.NoTrans and s == blas.Left,
// B = alpha * Aᵀ * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// B = alpha * B * A if tA == blas.NoTrans and s == blas.Right,
// B = alpha * B * Aᵀ if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
//
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
// a scalar.
func Trmm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General) {
blas32.Strmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Trsm solves
//
// A * X = alpha * B if tA == blas.NoTrans and s == blas.Left,
// Aᵀ * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// X * A = alpha * B if tA == blas.NoTrans and s == blas.Right,
// X * Aᵀ = alpha * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
//
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
// alpha is a scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
func Trsm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General) {
blas32.Strsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
|