1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"runtime"
"sync"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f64"
)
// Dgemm performs one of the matrix-matrix operations
//
// C = alpha * A * B + beta * C
// C = alpha * Aᵀ * B + beta * C
// C = alpha * A * Bᵀ + beta * C
// C = alpha * Aᵀ * Bᵀ + beta * C
//
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
// B are transposed.
func (Implementation) Dgemm(tA, tB blas.Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
switch tA {
default:
panic(badTranspose)
case blas.NoTrans, blas.Trans, blas.ConjTrans:
}
switch tB {
default:
panic(badTranspose)
case blas.NoTrans, blas.Trans, blas.ConjTrans:
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
aTrans := tA == blas.Trans || tA == blas.ConjTrans
if aTrans {
if lda < max(1, m) {
panic(badLdA)
}
} else {
if lda < max(1, k) {
panic(badLdA)
}
}
bTrans := tB == blas.Trans || tB == blas.ConjTrans
if bTrans {
if ldb < max(1, k) {
panic(badLdB)
}
} else {
if ldb < max(1, n) {
panic(badLdB)
}
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if aTrans {
if len(a) < (k-1)*lda+m {
panic(shortA)
}
} else {
if len(a) < (m-1)*lda+k {
panic(shortA)
}
}
if bTrans {
if len(b) < (n-1)*ldb+k {
panic(shortB)
}
} else {
if len(b) < (k-1)*ldb+n {
panic(shortB)
}
}
if len(c) < (m-1)*ldc+n {
panic(shortC)
}
// Quick return if possible.
if (alpha == 0 || k == 0) && beta == 1 {
return
}
// scale c
if beta != 1 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
} else {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
}
}
dgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
}
func dgemmParallel(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// dgemmParallel computes a parallel matrix multiplication by partitioning
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
// In all cases,
// A = [ A_11 A_12 ... A_1j
// A_21 A_22 ... A_2j
// ...
// A_i1 A_i2 ... A_ij]
//
// and same for B. All of the submatrix sizes are blockSize×blockSize except
// at the edges.
//
// In all cases, there is one dimension for each matrix along which
// C must be updated sequentially.
// Cij = \sum_k Aik Bki, (A * B)
// Cij = \sum_k Aki Bkj, (Aᵀ * B)
// Cij = \sum_k Aik Bjk, (A * Bᵀ)
// Cij = \sum_k Aki Bjk, (Aᵀ * Bᵀ)
//
// This code computes one {i, j} block sequentially along the k dimension,
// and computes all of the {i, j} blocks concurrently. This
// partitioning allows Cij to be updated in-place without race-conditions.
// Instead of launching a goroutine for each possible concurrent computation,
// a number of worker goroutines are created and channels are used to pass
// available and completed cases.
//
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
// multiplies, though this code does not copy matrices to attempt to eliminate
// cache misses.
maxKLen := k
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
if parBlocks < minParBlock {
// The matrix multiplication is small in the dimensions where it can be
// computed concurrently. Just do it in serial.
dgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
}
// workerLimit acts a number of maximum concurrent workers,
// with the limit set to the number of procs available.
workerLimit := make(chan struct{}, runtime.GOMAXPROCS(0))
// wg is used to wait for all
var wg sync.WaitGroup
wg.Add(parBlocks)
defer wg.Wait()
for i := 0; i < m; i += blockSize {
for j := 0; j < n; j += blockSize {
workerLimit <- struct{}{}
go func(i, j int) {
defer func() {
wg.Done()
<-workerLimit
}()
leni := blockSize
if i+leni > m {
leni = m - i
}
lenj := blockSize
if j+lenj > n {
lenj = n - j
}
cSub := sliceView64(c, ldc, i, j, leni, lenj)
// Compute A_ik B_kj for all k
for k := 0; k < maxKLen; k += blockSize {
lenk := blockSize
if k+lenk > maxKLen {
lenk = maxKLen - k
}
var aSub, bSub []float64
if aTrans {
aSub = sliceView64(a, lda, k, i, lenk, leni)
} else {
aSub = sliceView64(a, lda, i, k, leni, lenk)
}
if bTrans {
bSub = sliceView64(b, ldb, j, k, lenj, lenk)
} else {
bSub = sliceView64(b, ldb, k, j, lenk, lenj)
}
dgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
}
}(i, j)
}
}
}
// dgemmSerial is serial matrix multiply
func dgemmSerial(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
switch {
case !aTrans && !bTrans:
dgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case aTrans && !bTrans:
dgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case !aTrans && bTrans:
dgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case aTrans && bTrans:
dgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
default:
panic("unreachable")
}
}
// dgemmSerial where neither a nor b are transposed
func dgemmSerialNotNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for l, v := range a[i*lda : i*lda+k] {
tmp := alpha * v
if tmp != 0 {
f64.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
}
}
}
}
// dgemmSerial where neither a is transposed and b is not
func dgemmSerialTransNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for l := 0; l < k; l++ {
btmp := b[l*ldb : l*ldb+n]
for i, v := range a[l*lda : l*lda+m] {
tmp := alpha * v
if tmp != 0 {
ctmp := c[i*ldc : i*ldc+n]
f64.AxpyUnitary(tmp, btmp, ctmp)
}
}
}
}
// dgemmSerial where neither a is not transposed and b is
func dgemmSerialNotTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for i := 0; i < m; i++ {
atmp := a[i*lda : i*lda+k]
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] += alpha * f64.DotUnitary(atmp, b[j*ldb:j*ldb+k])
}
}
}
// dgemmSerial where both are transposed
func dgemmSerialTransTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for l := 0; l < k; l++ {
for i, v := range a[l*lda : l*lda+m] {
tmp := alpha * v
if tmp != 0 {
ctmp := c[i*ldc : i*ldc+n]
f64.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
}
}
}
}
func sliceView64(a []float64, lda, i, j, r, c int) []float64 {
return a[i*lda+j : (i+r-1)*lda+j+c]
}
|