1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testblas
import (
"math"
"math/cmplx"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/floats/scalar"
)
// throwPanic will throw unexpected panics if true, or will just report them as errors if false
const throwPanic = true
var znan = cmplx.NaN()
func dTolEqual(a, b float64) bool {
if math.IsNaN(a) && math.IsNaN(b) {
return true
}
if a == b {
return true
}
m := math.Max(math.Abs(a), math.Abs(b))
if m > 1 {
a /= m
b /= m
}
if math.Abs(a-b) < 1e-14 {
return true
}
return false
}
func dSliceTolEqual(a, b []float64) bool {
if len(a) != len(b) {
return false
}
for i := range a {
if !dTolEqual(a[i], b[i]) {
return false
}
}
return true
}
func dStridedSliceTolEqual(n int, a []float64, inca int, b []float64, incb int) bool {
ia := 0
ib := 0
if inca <= 0 {
ia = -(n - 1) * inca
}
if incb <= 0 {
ib = -(n - 1) * incb
}
for i := 0; i < n; i++ {
if !dTolEqual(a[ia], b[ib]) {
return false
}
ia += inca
ib += incb
}
return true
}
func dSliceEqual(a, b []float64) bool {
if len(a) != len(b) {
return false
}
for i := range a {
if !dTolEqual(a[i], b[i]) {
return false
}
}
return true
}
func dCopyTwoTmp(x, xTmp, y, yTmp []float64) {
if len(x) != len(xTmp) {
panic("x size mismatch")
}
if len(y) != len(yTmp) {
panic("y size mismatch")
}
copy(xTmp, x)
copy(yTmp, y)
}
// returns true if the function panics
func panics(f func()) (b bool) {
defer func() {
err := recover()
if err != nil {
b = true
}
}()
f()
return
}
func testpanics(f func(), name string, t *testing.T) {
b := panics(f)
if !b {
t.Errorf("%v should panic and does not", name)
}
}
func sliceOfSliceCopy(a [][]float64) [][]float64 {
n := make([][]float64, len(a))
for i := range a {
n[i] = make([]float64, len(a[i]))
copy(n[i], a[i])
}
return n
}
func sliceCopy(a []float64) []float64 {
n := make([]float64, len(a))
copy(n, a)
return n
}
func flatten(a [][]float64) []float64 {
if len(a) == 0 {
return nil
}
m := len(a)
n := len(a[0])
s := make([]float64, m*n)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
s[i*n+j] = a[i][j]
}
}
return s
}
func unflatten(a []float64, m, n int) [][]float64 {
s := make([][]float64, m)
for i := 0; i < m; i++ {
s[i] = make([]float64, n)
for j := 0; j < n; j++ {
s[i][j] = a[i*n+j]
}
}
return s
}
// flattenTriangular turns the upper or lower triangle of a dense slice of slice
// into a single slice with packed storage. a must be a square matrix.
func flattenTriangular(a [][]float64, ul blas.Uplo) []float64 {
m := len(a)
aFlat := make([]float64, m*(m+1)/2)
var k int
if ul == blas.Upper {
for i := 0; i < m; i++ {
k += copy(aFlat[k:], a[i][i:])
}
return aFlat
}
for i := 0; i < m; i++ {
k += copy(aFlat[k:], a[i][:i+1])
}
return aFlat
}
// flattenBanded turns a dense banded slice of slice into the compact banded matrix format
func flattenBanded(a [][]float64, ku, kl int) []float64 {
m := len(a)
n := len(a[0])
if ku < 0 || kl < 0 {
panic("testblas: negative band length")
}
nRows := m
nCols := (ku + kl + 1)
aflat := make([]float64, nRows*nCols)
for i := range aflat {
aflat[i] = math.NaN()
}
// loop over the rows, and then the bands
// elements in the ith row stay in the ith row
// order in bands is kept
for i := 0; i < nRows; i++ {
min := -kl
if i-kl < 0 {
min = -i
}
max := ku
if i+ku >= n {
max = n - i - 1
}
for j := min; j <= max; j++ {
col := kl + j
aflat[i*nCols+col] = a[i][i+j]
}
}
return aflat
}
// makeIncremented takes a float64 slice with inc == 1 and makes an incremented version
// and adds extra values on the end
func makeIncremented(x []float64, inc int, extra int) []float64 {
if inc == 0 {
panic("zero inc")
}
absinc := inc
if absinc < 0 {
absinc = -inc
}
xcopy := make([]float64, len(x))
if inc > 0 {
copy(xcopy, x)
} else {
for i := 0; i < len(x); i++ {
xcopy[i] = x[len(x)-i-1]
}
}
// don't use NaN because it makes comparison hard
// Do use a weird unique value for easier debugging
counter := 100.0
var xnew []float64
for i, v := range xcopy {
xnew = append(xnew, v)
if i != len(x)-1 {
for j := 0; j < absinc-1; j++ {
xnew = append(xnew, counter)
counter++
}
}
}
for i := 0; i < extra; i++ {
xnew = append(xnew, counter)
counter++
}
return xnew
}
// makeIncremented32 takes a float32 slice with inc == 1 and makes an incremented version
// and adds extra values on the end
func makeIncremented32(x []float32, inc int, extra int) []float32 {
if inc == 0 {
panic("zero inc")
}
absinc := inc
if absinc < 0 {
absinc = -inc
}
xcopy := make([]float32, len(x))
if inc > 0 {
copy(xcopy, x)
} else {
for i := 0; i < len(x); i++ {
xcopy[i] = x[len(x)-i-1]
}
}
// don't use NaN because it makes comparison hard
// Do use a weird unique value for easier debugging
var counter float32 = 100.0
var xnew []float32
for i, v := range xcopy {
xnew = append(xnew, v)
if i != len(x)-1 {
for j := 0; j < absinc-1; j++ {
xnew = append(xnew, counter)
counter++
}
}
}
for i := 0; i < extra; i++ {
xnew = append(xnew, counter)
counter++
}
return xnew
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
func allPairs(x, y []int) [][2]int {
var p [][2]int
for _, v0 := range x {
for _, v1 := range y {
p = append(p, [2]int{v0, v1})
}
}
return p
}
func sameFloat64(a, b float64) bool {
return a == b || math.IsNaN(a) && math.IsNaN(b)
}
func sameComplex128(x, y complex128) bool {
return sameFloat64(real(x), real(y)) && sameFloat64(imag(x), imag(y))
}
func zsame(x, y []complex128) bool {
if len(x) != len(y) {
return false
}
for i, v := range x {
w := y[i]
if !sameComplex128(v, w) {
return false
}
}
return true
}
// zSameAtNonstrided returns whether elements at non-stride positions of vectors
// x and y are same.
func zSameAtNonstrided(x, y []complex128, inc int) bool {
if len(x) != len(y) {
return false
}
if inc < 0 {
inc = -inc
}
for i, v := range x {
if i%inc == 0 {
continue
}
w := y[i]
if !sameComplex128(v, w) {
return false
}
}
return true
}
// zEqualApproxAtStrided returns whether elements at stride positions of vectors
// x and y are approximately equal within tol.
func zEqualApproxAtStrided(x, y []complex128, inc int, tol float64) bool {
if len(x) != len(y) {
return false
}
if inc < 0 {
inc = -inc
}
for i := 0; i < len(x); i += inc {
v := x[i]
w := y[i]
if !(cmplx.Abs(v-w) <= tol) {
return false
}
}
return true
}
func makeZVector(data []complex128, inc int) []complex128 {
if inc == 0 {
panic("bad test")
}
if len(data) == 0 {
return nil
}
inc = abs(inc)
x := make([]complex128, (len(data)-1)*inc+1)
for i := range x {
x[i] = znan
}
for i, v := range data {
x[i*inc] = v
}
return x
}
func makeZGeneral(data []complex128, m, n int, ld int) []complex128 {
if m < 0 || n < 0 {
panic("bad test")
}
if data != nil && len(data) != m*n {
panic("bad test")
}
if ld < max(1, n) {
panic("bad test")
}
if m == 0 || n == 0 {
return nil
}
a := make([]complex128, (m-1)*ld+n)
for i := range a {
a[i] = znan
}
if data != nil {
for i := 0; i < m; i++ {
copy(a[i*ld:i*ld+n], data[i*n:i*n+n])
}
}
return a
}
// zPack returns the uplo triangle of an n×n matrix A in packed format.
func zPack(uplo blas.Uplo, n int, a []complex128, lda int) []complex128 {
if n == 0 {
return nil
}
ap := make([]complex128, n*(n+1)/2)
var ii int
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
ap[ii] = a[i*lda+j]
ii++
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
ap[ii] = a[i*lda+j]
ii++
}
}
}
return ap
}
// zUnpackAsHermitian returns an n×n general Hermitian matrix (with stride n)
// whose packed uplo triangle is stored on entry in ap.
func zUnpackAsHermitian(uplo blas.Uplo, n int, ap []complex128) []complex128 {
if n == 0 {
return nil
}
a := make([]complex128, n*n)
lda := n
var ii int
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
a[i*lda+j] = ap[ii]
if i != j {
a[j*lda+i] = cmplx.Conj(ap[ii])
}
ii++
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
a[i*lda+j] = ap[ii]
if i != j {
a[j*lda+i] = cmplx.Conj(ap[ii])
}
ii++
}
}
}
return a
}
// zPackBand returns the (kL+1+kU) band of an m×n general matrix A in band
// matrix format with ldab stride. Out-of-range elements are filled with NaN.
func zPackBand(kL, kU, ldab int, m, n int, a []complex128, lda int) []complex128 {
if m == 0 || n == 0 {
return nil
}
nRow := min(m, n+kL)
ab := make([]complex128, (nRow-1)*ldab+kL+1+kU)
for i := range ab {
ab[i] = znan
}
for i := 0; i < m; i++ {
off := max(0, kL-i)
var k int
for j := max(0, i-kL); j < min(n, i+kU+1); j++ {
ab[i*ldab+off+k] = a[i*lda+j]
k++
}
}
return ab
}
// zPackTriBand returns in band matrix format the (k+1) band in the uplo
// triangle of an n×n matrix A. Out-of-range elements are filled with NaN.
func zPackTriBand(k, ldab int, uplo blas.Uplo, n int, a []complex128, lda int) []complex128 {
if n == 0 {
return nil
}
ab := make([]complex128, (n-1)*ldab+k+1)
for i := range ab {
ab[i] = znan
}
if uplo == blas.Upper {
for i := 0; i < n; i++ {
var k int
for j := i; j < min(n, i+k+1); j++ {
ab[i*ldab+k] = a[i*lda+j]
k++
}
}
} else {
for i := 0; i < n; i++ {
off := max(0, k-i)
var kk int
for j := max(0, i-k); j <= i; j++ {
ab[i*ldab+off+kk] = a[i*lda+j]
kk++
}
}
}
return ab
}
// zEqualApprox returns whether the slices a and b are approximately equal.
func zEqualApprox(a, b []complex128, tol float64) bool {
if len(a) != len(b) {
panic("mismatched slice length")
}
for i, ai := range a {
if !scalar.EqualWithinAbs(cmplx.Abs(ai), cmplx.Abs(b[i]), tol) {
return false
}
}
return true
}
// rndComplex128 returns a complex128 with random components.
func rndComplex128(rnd *rand.Rand) complex128 {
return complex(rnd.NormFloat64(), rnd.NormFloat64())
}
// zmm returns the result of one of the matrix-matrix operations
//
// alpha * op(A) * op(B) + beta * C
//
// where op(X) is one of
//
// op(X) = X or op(X) = Xᵀ or op(X) = Xᴴ,
//
// alpha and beta are scalars, and A, B and C are matrices, with op(A) an m×k matrix,
// op(B) a k×n matrix and C an m×n matrix.
//
// The returned slice is newly allocated, has the same length as c and the
// matrix it represents has the stride ldc. Out-of-range elements are equal to
// those of C to ease comparison of results from BLAS Level 3 functions.
func zmm(tA, tB blas.Transpose, m, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int) []complex128 {
r := make([]complex128, len(c))
copy(r, c)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
r[i*ldc+j] = 0
}
}
switch tA {
case blas.NoTrans:
switch tB {
case blas.NoTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[i*lda+l] * b[l*ldb+j]
}
}
}
case blas.Trans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[i*lda+l] * b[j*ldb+l]
}
}
}
case blas.ConjTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[i*lda+l] * cmplx.Conj(b[j*ldb+l])
}
}
}
}
case blas.Trans:
switch tB {
case blas.NoTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[l*lda+i] * b[l*ldb+j]
}
}
}
case blas.Trans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[l*lda+i] * b[j*ldb+l]
}
}
}
case blas.ConjTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[l*lda+i] * cmplx.Conj(b[j*ldb+l])
}
}
}
}
case blas.ConjTrans:
switch tB {
case blas.NoTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += cmplx.Conj(a[l*lda+i]) * b[l*ldb+j]
}
}
}
case blas.Trans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += cmplx.Conj(a[l*lda+i]) * b[j*ldb+l]
}
}
}
case blas.ConjTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += cmplx.Conj(a[l*lda+i]) * cmplx.Conj(b[j*ldb+l])
}
}
}
}
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
r[i*ldc+j] = alpha * r[i*ldc+j]
if beta != 0 {
r[i*ldc+j] += beta * c[i*ldc+j]
}
}
}
return r
}
// transString returns a string representation of blas.Transpose.
func transString(t blas.Transpose) string {
switch t {
case blas.NoTrans:
return "NoTrans"
case blas.Trans:
return "Trans"
case blas.ConjTrans:
return "ConjTrans"
}
return "unknown trans"
}
// uploString returns a string representation of blas.Uplo.
func uploString(uplo blas.Uplo) string {
switch uplo {
case blas.Lower:
return "Lower"
case blas.Upper:
return "Upper"
}
return "unknown uplo"
}
// sideString returns a string representation of blas.Side.
func sideString(side blas.Side) string {
switch side {
case blas.Left:
return "Left"
case blas.Right:
return "Right"
}
return "unknown side"
}
// diagString returns a string representation of blas.Diag.
func diagString(diag blas.Diag) string {
switch diag {
case blas.Unit:
return "Unit"
case blas.NonUnit:
return "NonUnit"
}
return "unknown diag"
}
// zSameLowerTri returns whether n×n matrices A and B are same under the diagonal.
func zSameLowerTri(n int, a []complex128, lda int, b []complex128, ldb int) bool {
for i := 1; i < n; i++ {
for j := 0; j < i; j++ {
aij := a[i*lda+j]
bij := b[i*ldb+j]
if !sameComplex128(aij, bij) {
return false
}
}
}
return true
}
// zSameUpperTri returns whether n×n matrices A and B are same above the diagonal.
func zSameUpperTri(n int, a []complex128, lda int, b []complex128, ldb int) bool {
for i := 0; i < n-1; i++ {
for j := i + 1; j < n; j++ {
aij := a[i*lda+j]
bij := b[i*ldb+j]
if !sameComplex128(aij, bij) {
return false
}
}
}
return true
}
|