1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testblas
import (
"fmt"
"math/cmplx"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
)
type Zhemmer interface {
Zhemm(side blas.Side, uplo blas.Uplo, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
}
func ZhemmTest(t *testing.T, impl Zhemmer) {
for _, side := range []blas.Side{blas.Left, blas.Right} {
for _, uplo := range []blas.Uplo{blas.Lower, blas.Upper} {
name := sideString(side) + "-" + uploString(uplo)
t.Run(name, func(t *testing.T) {
for _, m := range []int{0, 1, 2, 3, 4, 5} {
for _, n := range []int{0, 1, 2, 3, 4, 5} {
zhemmTest(t, impl, side, uplo, m, n)
}
}
})
}
}
}
func zhemmTest(t *testing.T, impl Zhemmer, side blas.Side, uplo blas.Uplo, m, n int) {
const tol = 1e-13
rnd := rand.New(rand.NewSource(1))
nA := m
if side == blas.Right {
nA = n
}
for _, lda := range []int{max(1, nA), nA + 2} {
for _, ldb := range []int{max(1, n), n + 3} {
for _, ldc := range []int{max(1, n), n + 4} {
for _, alpha := range []complex128{0, 1, complex(0.7, -0.9)} {
for _, beta := range []complex128{0, 1, complex(1.3, -1.1)} {
for _, nanC := range []bool{false, true} {
if nanC && beta != 0 {
// Skip tests with C containing NaN values
// unless beta would zero out the NaNs.
continue
}
// Allocate the matrix A and fill it with random numbers.
a := make([]complex128, nA*lda)
for i := range a {
a[i] = rndComplex128(rnd)
}
// Create a copy of A for checking that
// Zhemm does not modify its triangle
// opposite to uplo.
aCopy := make([]complex128, len(a))
copy(aCopy, a)
// Create a copy of A expanded into a
// full hermitian matrix for computing
// the expected result using zmm.
aHem := make([]complex128, len(a))
copy(aHem, a)
if uplo == blas.Upper {
for i := 0; i < nA; i++ {
aHem[i*lda+i] = complex(real(aHem[i*lda+i]), 0)
for j := i + 1; j < nA; j++ {
aHem[j*lda+i] = cmplx.Conj(aHem[i*lda+j])
}
}
} else {
for i := 0; i < nA; i++ {
for j := 0; j < i; j++ {
aHem[j*lda+i] = cmplx.Conj(aHem[i*lda+j])
}
aHem[i*lda+i] = complex(real(aHem[i*lda+i]), 0)
}
}
// Allocate the matrix B and fill it with random numbers.
b := make([]complex128, m*ldb)
for i := range b {
b[i] = rndComplex128(rnd)
}
// Create a copy of B for checking that
// Zhemm does not modify B.
bCopy := make([]complex128, len(b))
copy(bCopy, b)
// Allocate the matrix C and fill it with random numbers.
c := make([]complex128, m*ldc)
for i := range c {
c[i] = rndComplex128(rnd)
}
if nanC {
for i := 0; i < n; i++ {
for j := 0; j < m; j++ {
c[i+j*ldc] = cmplx.NaN()
}
}
}
// Compute the expected result using an internal Zgemm implementation.
var want []complex128
if side == blas.Left {
want = zmm(blas.NoTrans, blas.NoTrans, m, n, m, alpha, aHem, lda, b, ldb, beta, c, ldc)
} else {
want = zmm(blas.NoTrans, blas.NoTrans, m, n, n, alpha, b, ldb, aHem, lda, beta, c, ldc)
}
// Compute the result using Zhemm.
impl.Zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
prefix := fmt.Sprintf("m=%v,n=%v,lda=%v,ldb=%v,ldc=%v,alpha=%v,beta=%v", m, n, lda, ldb, ldc, alpha, beta)
if !zsame(a, aCopy) {
t.Errorf("%v: unexpected modification of A", prefix)
continue
}
if !zsame(b, bCopy) {
t.Errorf("%v: unexpected modification of B", prefix)
continue
}
if !zEqualApprox(c, want, tol) {
t.Errorf("%v: unexpected result", prefix)
}
}
}
}
}
}
}
}
|