1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fd
import (
"math"
"sync"
)
// CrossLaplacian computes a Laplacian-like quantity for a function of two vectors
// at the locations x and y.
// It computes
//
// ∇_y · ∇_x f(x,y) = \sum_i ∂^2 f(x,y)/∂x_i ∂y_i
//
// The two input vector lengths must be the same.
//
// Finite difference formula and other options are specified by settings. If
// settings is nil, CrossLaplacian will be estimated using the Forward formula and
// a default step size.
//
// CrossLaplacian panics if the two input vectors are not the same length, or if
// the derivative order of the formula is not 1.
func CrossLaplacian(f func(x, y []float64) float64, x, y []float64, settings *Settings) float64 {
n := len(x)
if n == 0 {
panic("crosslaplacian: x has zero length")
}
if len(x) != len(y) {
panic("crosslaplacian: input vector length mismatch")
}
// Default settings.
formula := Forward
step := math.Sqrt(formula.Step) // Use the sqrt because taking derivatives of derivatives.
var originValue float64
var originKnown, concurrent bool
// Use user settings if provided.
if settings != nil {
if !settings.Formula.isZero() {
formula = settings.Formula
step = math.Sqrt(formula.Step)
checkFormula(formula)
if formula.Derivative != 1 {
panic(badDerivOrder)
}
}
if settings.Step != 0 {
if settings.Step < 0 {
panic(negativeStep)
}
step = settings.Step
}
originKnown = settings.OriginKnown
originValue = settings.OriginValue
concurrent = settings.Concurrent
}
evals := n * len(formula.Stencil) * len(formula.Stencil)
if usesOrigin(formula.Stencil) {
evals -= n
}
nWorkers := computeWorkers(concurrent, evals)
if nWorkers == 1 {
return crossLaplacianSerial(f, x, y, formula.Stencil, step, originKnown, originValue)
}
return crossLaplacianConcurrent(nWorkers, evals, f, x, y, formula.Stencil, step, originKnown, originValue)
}
func crossLaplacianSerial(f func(x, y []float64) float64, x, y []float64, stencil []Point, step float64, originKnown bool, originValue float64) float64 {
n := len(x)
xCopy := make([]float64, len(x))
yCopy := make([]float64, len(y))
fo := func() float64 {
// Copy x and y in case they are modified during the call.
copy(xCopy, x)
copy(yCopy, y)
return f(x, y)
}
origin := getOrigin(originKnown, originValue, fo, stencil)
is2 := 1 / (step * step)
var laplacian float64
for i := 0; i < n; i++ {
for _, pty := range stencil {
for _, ptx := range stencil {
var v float64
if ptx.Loc == 0 && pty.Loc == 0 {
v = origin
} else {
// Copying the data anew has two benefits. First, it
// avoids floating point issues where adding and then
// subtracting the step don't return to the exact same
// location. Secondly, it protects against the function
// modifying the input data.
copy(yCopy, y)
copy(xCopy, x)
yCopy[i] += pty.Loc * step
xCopy[i] += ptx.Loc * step
v = f(xCopy, yCopy)
}
laplacian += v * ptx.Coeff * pty.Coeff * is2
}
}
}
return laplacian
}
func crossLaplacianConcurrent(nWorkers, evals int, f func(x, y []float64) float64, x, y []float64, stencil []Point, step float64, originKnown bool, originValue float64) float64 {
n := len(x)
type run struct {
i int
xIdx, yIdx int
result float64
}
send := make(chan run, evals)
ans := make(chan run, evals)
var originWG sync.WaitGroup
hasOrigin := usesOrigin(stencil)
if hasOrigin {
originWG.Add(1)
// Launch worker to compute the origin.
go func() {
defer originWG.Done()
xCopy := make([]float64, len(x))
yCopy := make([]float64, len(y))
copy(xCopy, x)
copy(yCopy, y)
originValue = f(xCopy, yCopy)
}()
}
var workerWG sync.WaitGroup
// Launch workers.
for i := 0; i < nWorkers; i++ {
workerWG.Add(1)
go func(send <-chan run, ans chan<- run) {
defer workerWG.Done()
xCopy := make([]float64, len(x))
yCopy := make([]float64, len(y))
for r := range send {
if stencil[r.xIdx].Loc == 0 && stencil[r.yIdx].Loc == 0 {
originWG.Wait()
r.result = originValue
} else {
// See crossLaplacianSerial for comment on the copy.
copy(xCopy, x)
copy(yCopy, y)
xCopy[r.i] += stencil[r.xIdx].Loc * step
yCopy[r.i] += stencil[r.yIdx].Loc * step
r.result = f(xCopy, yCopy)
}
ans <- r
}
}(send, ans)
}
// Launch the distributor, which sends all of runs.
go func(send chan<- run) {
for i := 0; i < n; i++ {
for xIdx := range stencil {
for yIdx := range stencil {
send <- run{
i: i, xIdx: xIdx, yIdx: yIdx,
}
}
}
}
close(send)
// Wait for all the workers to quit, then close the ans channel.
workerWG.Wait()
close(ans)
}(send)
// Read in the results.
is2 := 1 / (step * step)
var laplacian float64
for r := range ans {
laplacian += r.result * stencil[r.xIdx].Coeff * stencil[r.yIdx].Coeff * is2
}
return laplacian
}
|