1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fd
import (
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
)
type Rosenbrock struct {
nDim int
}
func (r Rosenbrock) F(x []float64) (sum float64) {
deriv := make([]float64, len(x))
return r.FDf(x, deriv)
}
func (r Rosenbrock) FDf(x []float64, deriv []float64) (sum float64) {
for i := range deriv {
deriv[i] = 0
}
for i := 0; i < len(x)-1; i++ {
sum += math.Pow(1-x[i], 2) + 100*math.Pow(x[i+1]-math.Pow(x[i], 2), 2)
}
for i := 0; i < len(x)-1; i++ {
deriv[i] += -1 * 2 * (1 - x[i])
deriv[i] += 2 * 100 * (x[i+1] - math.Pow(x[i], 2)) * (-2 * x[i])
}
for i := 1; i < len(x); i++ {
deriv[i] += 2 * 100 * (x[i] - math.Pow(x[i-1], 2))
}
return sum
}
func TestGradient(t *testing.T) {
t.Parallel()
rnd := rand.New(rand.NewSource(1))
for i, test := range []struct {
nDim int
tol float64
formula Formula
}{
{
nDim: 2,
tol: 2e-4,
formula: Forward,
},
{
nDim: 2,
tol: 1e-6,
formula: Central,
},
{
nDim: 40,
tol: 2e-4,
formula: Forward,
},
{
nDim: 40,
tol: 1e-5,
formula: Central,
},
} {
x := make([]float64, test.nDim)
for i := range x {
x[i] = rnd.Float64()
}
xcopy := make([]float64, len(x))
copy(xcopy, x)
r := Rosenbrock{len(x)}
trueGradient := make([]float64, len(x))
r.FDf(x, trueGradient)
// Try with gradient nil.
gradient := Gradient(nil, r.F, x, &Settings{
Formula: test.formula,
})
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch in serial with nil. Want: %v, Got: %v.", i, trueGradient, gradient)
}
if !floats.Equal(x, xcopy) {
t.Errorf("Case %v: x modified during call to gradient in serial with nil.", i)
}
// Try with provided gradient.
for i := range gradient {
gradient[i] = rnd.Float64()
}
Gradient(gradient, r.F, x, &Settings{
Formula: test.formula,
})
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch in serial. Want: %v, Got: %v.", i, trueGradient, gradient)
}
if !floats.Equal(x, xcopy) {
t.Errorf("Case %v: x modified during call to gradient in serial with non-nil.", i)
}
// Try with known value.
for i := range gradient {
gradient[i] = rnd.Float64()
}
Gradient(gradient, r.F, x, &Settings{
Formula: test.formula,
OriginKnown: true,
OriginValue: r.F(x),
})
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch with known origin in serial. Want: %v, Got: %v.", i, trueGradient, gradient)
}
// Try with concurrent evaluation.
for i := range gradient {
gradient[i] = rnd.Float64()
}
Gradient(gradient, r.F, x, &Settings{
Formula: test.formula,
Concurrent: true,
})
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch with unknown origin in parallel. Want: %v, Got: %v.", i, trueGradient, gradient)
}
if !floats.Equal(x, xcopy) {
t.Errorf("Case %v: x modified during call to gradient in parallel", i)
}
// Try with concurrent evaluation with origin known.
for i := range gradient {
gradient[i] = rnd.Float64()
}
Gradient(gradient, r.F, x, &Settings{
Formula: test.formula,
Concurrent: true,
OriginKnown: true,
OriginValue: r.F(x),
})
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch with known origin in parallel. Want: %v, Got: %v.", i, trueGradient, gradient)
}
// Try with nil settings.
for i := range gradient {
gradient[i] = rnd.Float64()
}
Gradient(gradient, r.F, x, nil)
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch with default settings. Want: %v, Got: %v.", i, trueGradient, gradient)
}
// Try with zero-valued settings.
for i := range gradient {
gradient[i] = rnd.Float64()
}
Gradient(gradient, r.F, x, &Settings{})
if !floats.EqualApprox(gradient, trueGradient, test.tol) {
t.Errorf("Case %v: gradient mismatch with zero settings. Want: %v, Got: %v.", i, trueGradient, gradient)
}
}
}
func Panics(fun func()) (b bool) {
defer func() {
err := recover()
if err != nil {
b = true
}
}()
fun()
return
}
func TestGradientPanics(t *testing.T) {
t.Parallel()
// Test that it panics
if !Panics(func() {
Gradient([]float64{0.0}, func(x []float64) float64 { return x[0] * x[0] }, []float64{0.0, 0.0}, nil)
}) {
t.Errorf("Gradient did not panic with length mismatch")
}
}
|