File: gradient_test.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (190 lines) | stat: -rw-r--r-- 4,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package fd

import (
	"math"
	"testing"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/floats"
)

type Rosenbrock struct {
	nDim int
}

func (r Rosenbrock) F(x []float64) (sum float64) {
	deriv := make([]float64, len(x))
	return r.FDf(x, deriv)
}

func (r Rosenbrock) FDf(x []float64, deriv []float64) (sum float64) {
	for i := range deriv {
		deriv[i] = 0
	}

	for i := 0; i < len(x)-1; i++ {
		sum += math.Pow(1-x[i], 2) + 100*math.Pow(x[i+1]-math.Pow(x[i], 2), 2)
	}
	for i := 0; i < len(x)-1; i++ {
		deriv[i] += -1 * 2 * (1 - x[i])
		deriv[i] += 2 * 100 * (x[i+1] - math.Pow(x[i], 2)) * (-2 * x[i])
	}
	for i := 1; i < len(x); i++ {
		deriv[i] += 2 * 100 * (x[i] - math.Pow(x[i-1], 2))
	}

	return sum
}

func TestGradient(t *testing.T) {
	t.Parallel()
	rnd := rand.New(rand.NewSource(1))
	for i, test := range []struct {
		nDim    int
		tol     float64
		formula Formula
	}{
		{
			nDim:    2,
			tol:     2e-4,
			formula: Forward,
		},
		{
			nDim:    2,
			tol:     1e-6,
			formula: Central,
		},
		{
			nDim:    40,
			tol:     2e-4,
			formula: Forward,
		},
		{
			nDim:    40,
			tol:     1e-5,
			formula: Central,
		},
	} {
		x := make([]float64, test.nDim)
		for i := range x {
			x[i] = rnd.Float64()
		}
		xcopy := make([]float64, len(x))
		copy(xcopy, x)

		r := Rosenbrock{len(x)}
		trueGradient := make([]float64, len(x))
		r.FDf(x, trueGradient)

		// Try with gradient nil.
		gradient := Gradient(nil, r.F, x, &Settings{
			Formula: test.formula,
		})
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch in serial with nil. Want: %v, Got: %v.", i, trueGradient, gradient)
		}
		if !floats.Equal(x, xcopy) {
			t.Errorf("Case %v: x modified during call to gradient in serial with nil.", i)
		}

		// Try with provided gradient.
		for i := range gradient {
			gradient[i] = rnd.Float64()
		}
		Gradient(gradient, r.F, x, &Settings{
			Formula: test.formula,
		})
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch in serial. Want: %v, Got: %v.", i, trueGradient, gradient)
		}
		if !floats.Equal(x, xcopy) {
			t.Errorf("Case %v: x modified during call to gradient in serial with non-nil.", i)
		}

		// Try with known value.
		for i := range gradient {
			gradient[i] = rnd.Float64()
		}
		Gradient(gradient, r.F, x, &Settings{
			Formula:     test.formula,
			OriginKnown: true,
			OriginValue: r.F(x),
		})
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch with known origin in serial. Want: %v, Got: %v.", i, trueGradient, gradient)
		}

		// Try with concurrent evaluation.
		for i := range gradient {
			gradient[i] = rnd.Float64()
		}
		Gradient(gradient, r.F, x, &Settings{
			Formula:    test.formula,
			Concurrent: true,
		})
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch with unknown origin in parallel. Want: %v, Got: %v.", i, trueGradient, gradient)
		}
		if !floats.Equal(x, xcopy) {
			t.Errorf("Case %v: x modified during call to gradient in parallel", i)
		}

		// Try with concurrent evaluation with origin known.
		for i := range gradient {
			gradient[i] = rnd.Float64()
		}
		Gradient(gradient, r.F, x, &Settings{
			Formula:     test.formula,
			Concurrent:  true,
			OriginKnown: true,
			OriginValue: r.F(x),
		})
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch with known origin in parallel. Want: %v, Got: %v.", i, trueGradient, gradient)
		}

		// Try with nil settings.
		for i := range gradient {
			gradient[i] = rnd.Float64()
		}
		Gradient(gradient, r.F, x, nil)
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch with default settings. Want: %v, Got: %v.", i, trueGradient, gradient)
		}

		// Try with zero-valued settings.
		for i := range gradient {
			gradient[i] = rnd.Float64()
		}
		Gradient(gradient, r.F, x, &Settings{})
		if !floats.EqualApprox(gradient, trueGradient, test.tol) {
			t.Errorf("Case %v: gradient mismatch with zero settings. Want: %v, Got: %v.", i, trueGradient, gradient)
		}
	}
}

func Panics(fun func()) (b bool) {
	defer func() {
		err := recover()
		if err != nil {
			b = true
		}
	}()
	fun()
	return
}

func TestGradientPanics(t *testing.T) {
	t.Parallel()
	// Test that it panics
	if !Panics(func() {
		Gradient([]float64{0.0}, func(x []float64) float64 { return x[0] * x[0] }, []float64{0.0, 0.0}, nil)
	}) {
		t.Errorf("Gradient did not panic with length mismatch")
	}
}