1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fd
import (
"math"
"sync"
"gonum.org/v1/gonum/mat"
)
// Hessian approximates the Hessian matrix of the multivariate function f at
// the location x. That is
//
// H_{i,j} = ∂^2 f(x)/∂x_i ∂x_j
//
// The resulting H will be stored in dst. Finite difference formula and other
// options are specified by settings. If settings is nil, the Hessian will be
// estimated using the Forward formula and a default step size.
//
// If the dst matrix is empty it will be resized to the correct dimensions,
// otherwise the dimensions of dst must match the length of x or Hessian will panic.
// Hessian will panic if the derivative order of the formula is not 1.
func Hessian(dst *mat.SymDense, f func(x []float64) float64, x []float64, settings *Settings) {
n := len(x)
if dst.IsEmpty() {
*dst = *(dst.GrowSym(n).(*mat.SymDense))
} else if dst.SymmetricDim() != n {
panic("hessian: dst size mismatch")
}
dst.Zero()
// Default settings.
formula := Forward
step := math.Sqrt(formula.Step) // Use the sqrt because taking derivatives of derivatives.
var originValue float64
var originKnown, concurrent bool
// Use user settings if provided.
if settings != nil {
if !settings.Formula.isZero() {
formula = settings.Formula
step = math.Sqrt(formula.Step)
checkFormula(formula)
if formula.Derivative != 1 {
panic(badDerivOrder)
}
}
if settings.Step != 0 {
if settings.Step < 0 {
panic(negativeStep)
}
step = settings.Step
}
originKnown = settings.OriginKnown
originValue = settings.OriginValue
concurrent = settings.Concurrent
}
evals := n * (n + 1) / 2 * len(formula.Stencil) * len(formula.Stencil)
for _, pt := range formula.Stencil {
if pt.Loc == 0 {
evals -= n * (n + 1) / 2
break
}
}
nWorkers := computeWorkers(concurrent, evals)
if nWorkers == 1 {
hessianSerial(dst, f, x, formula.Stencil, step, originKnown, originValue)
return
}
hessianConcurrent(dst, nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
}
func hessianSerial(dst *mat.SymDense, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
n := len(x)
xCopy := make([]float64, n)
fo := func() float64 {
// Copy x in case it is modified during the call.
copy(xCopy, x)
return f(x)
}
is2 := 1 / (step * step)
origin := getOrigin(originKnown, originValue, fo, stencil)
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
var hess float64
for _, pti := range stencil {
for _, ptj := range stencil {
var v float64
if pti.Loc == 0 && ptj.Loc == 0 {
v = origin
} else {
// Copying the data anew has two benefits. First, it
// avoids floating point issues where adding and then
// subtracting the step don't return to the exact same
// location. Secondly, it protects against the function
// modifying the input data.
copy(xCopy, x)
xCopy[i] += pti.Loc * step
xCopy[j] += ptj.Loc * step
v = f(xCopy)
}
hess += v * pti.Coeff * ptj.Coeff * is2
}
}
dst.SetSym(i, j, hess)
}
}
}
func hessianConcurrent(dst *mat.SymDense, nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
n := dst.SymmetricDim()
type run struct {
i, j int
iIdx, jIdx int
result float64
}
send := make(chan run, evals)
ans := make(chan run, evals)
var originWG sync.WaitGroup
hasOrigin := usesOrigin(stencil)
if hasOrigin {
originWG.Add(1)
// Launch worker to compute the origin.
go func() {
defer originWG.Done()
xCopy := make([]float64, len(x))
copy(xCopy, x)
originValue = f(xCopy)
}()
}
var workerWG sync.WaitGroup
// Launch workers.
for i := 0; i < nWorkers; i++ {
workerWG.Add(1)
go func(send <-chan run, ans chan<- run) {
defer workerWG.Done()
xCopy := make([]float64, len(x))
for r := range send {
if stencil[r.iIdx].Loc == 0 && stencil[r.jIdx].Loc == 0 {
originWG.Wait()
r.result = originValue
} else {
// See hessianSerial for comment on the copy.
copy(xCopy, x)
xCopy[r.i] += stencil[r.iIdx].Loc * step
xCopy[r.j] += stencil[r.jIdx].Loc * step
r.result = f(xCopy)
}
ans <- r
}
}(send, ans)
}
// Launch the distributor, which sends all of runs.
go func(send chan<- run) {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
for iIdx := range stencil {
for jIdx := range stencil {
send <- run{
i: i, j: j, iIdx: iIdx, jIdx: jIdx,
}
}
}
}
}
close(send)
// Wait for all the workers to quit, then close the ans channel.
workerWG.Wait()
close(ans)
}(send)
is2 := 1 / (step * step)
// Read in the results.
for r := range ans {
v := r.result * stencil[r.iIdx].Coeff * stencil[r.jIdx].Coeff * is2
v += dst.At(r.i, r.j)
dst.SetSym(r.i, r.j, v)
}
}
|