1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fd
import "sync"
// Laplacian computes the Laplacian of the multivariate function f at the location
// x. That is, Laplacian returns
//
// ∆ f(x) = ∇ · ∇ f(x) = \sum_i ∂^2 f(x)/∂x_i^2
//
// The finite difference formula and other options are specified by settings.
// The order of the difference formula must be 2 or Laplacian will panic.
func Laplacian(f func(x []float64) float64, x []float64, settings *Settings) float64 {
n := len(x)
if n == 0 {
panic("laplacian: x has zero length")
}
// Default settings.
formula := Central2nd
step := formula.Step
var originValue float64
var originKnown, concurrent bool
// Use user settings if provided.
if settings != nil {
if !settings.Formula.isZero() {
formula = settings.Formula
step = formula.Step
checkFormula(formula)
if formula.Derivative != 2 {
panic(badDerivOrder)
}
}
if settings.Step != 0 {
if settings.Step < 0 {
panic(negativeStep)
}
step = settings.Step
}
originKnown = settings.OriginKnown
originValue = settings.OriginValue
concurrent = settings.Concurrent
}
evals := n * len(formula.Stencil)
if usesOrigin(formula.Stencil) {
evals -= n
}
nWorkers := computeWorkers(concurrent, evals)
if nWorkers == 1 {
return laplacianSerial(f, x, formula.Stencil, step, originKnown, originValue)
}
return laplacianConcurrent(nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
}
func laplacianSerial(f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) float64 {
n := len(x)
xCopy := make([]float64, n)
fo := func() float64 {
// Copy x in case it is modified during the call.
copy(xCopy, x)
return f(x)
}
is2 := 1 / (step * step)
origin := getOrigin(originKnown, originValue, fo, stencil)
var laplacian float64
for i := 0; i < n; i++ {
for _, pt := range stencil {
var v float64
if pt.Loc == 0 {
v = origin
} else {
// Copying the data anew has two benefits. First, it
// avoids floating point issues where adding and then
// subtracting the step don't return to the exact same
// location. Secondly, it protects against the function
// modifying the input data.
copy(xCopy, x)
xCopy[i] += pt.Loc * step
v = f(xCopy)
}
laplacian += v * pt.Coeff * is2
}
}
return laplacian
}
func laplacianConcurrent(nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) float64 {
type run struct {
i int
idx int
result float64
}
n := len(x)
send := make(chan run, evals)
ans := make(chan run, evals)
var originWG sync.WaitGroup
hasOrigin := usesOrigin(stencil)
if hasOrigin {
originWG.Add(1)
// Launch worker to compute the origin.
go func() {
defer originWG.Done()
xCopy := make([]float64, len(x))
copy(xCopy, x)
originValue = f(xCopy)
}()
}
var workerWG sync.WaitGroup
// Launch workers.
for i := 0; i < nWorkers; i++ {
workerWG.Add(1)
go func(send <-chan run, ans chan<- run) {
defer workerWG.Done()
xCopy := make([]float64, len(x))
for r := range send {
if stencil[r.idx].Loc == 0 {
originWG.Wait()
r.result = originValue
} else {
// See laplacianSerial for comment on the copy.
copy(xCopy, x)
xCopy[r.i] += stencil[r.idx].Loc * step
r.result = f(xCopy)
}
ans <- r
}
}(send, ans)
}
// Launch the distributor, which sends all of runs.
go func(send chan<- run) {
for i := 0; i < n; i++ {
for idx := range stencil {
send <- run{
i: i, idx: idx,
}
}
}
close(send)
// Wait for all the workers to quit, then close the ans channel.
workerWG.Wait()
close(ans)
}(send)
// Read in the results.
is2 := 1 / (step * step)
var laplacian float64
for r := range ans {
laplacian += r.result * stencil[r.idx].Coeff * is2
}
return laplacian
}
|