File: watson_test.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (132 lines) | stat: -rw-r--r-- 2,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package fd

import "gonum.org/v1/gonum/mat"

// Watson implements the Watson's function.
// Dimension of the problem should be 2 <= dim <= 31. For dim == 9, the problem
// of minimizing the function is very ill conditioned.
//
// This is copied from gonum.org/v1/optimize/functions for testing Hessian-like
// derivative methods.
//
// References:
//   - Kowalik, J.S., Osborne, M.R.: Methods for Unconstrained Optimization
//     Problems. Elsevier North-Holland, New York, 1968
//   - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained
//     optimization software. ACM Trans Math Softw 7 (1981), 17-41
type Watson struct{}

func (Watson) Func(x []float64) (sum float64) {
	for i := 1; i <= 29; i++ {
		d1 := float64(i) / 29

		d2 := 1.0
		var s1 float64
		for j := 1; j < len(x); j++ {
			s1 += float64(j) * d2 * x[j]
			d2 *= d1
		}

		d2 = 1.0
		var s2 float64
		for _, v := range x {
			s2 += d2 * v
			d2 *= d1
		}

		t := s1 - s2*s2 - 1
		sum += t * t
	}
	t := x[1] - x[0]*x[0] - 1
	sum += x[0]*x[0] + t*t
	return sum
}

func (Watson) Grad(grad, x []float64) {
	if len(x) != len(grad) {
		panic("incorrect size of the gradient")
	}

	for i := range grad {
		grad[i] = 0
	}
	for i := 1; i <= 29; i++ {
		d1 := float64(i) / 29

		d2 := 1.0
		var s1 float64
		for j := 1; j < len(x); j++ {
			s1 += float64(j) * d2 * x[j]
			d2 *= d1
		}

		d2 = 1.0
		var s2 float64
		for _, v := range x {
			s2 += d2 * v
			d2 *= d1
		}

		t := s1 - s2*s2 - 1
		s3 := 2 * d1 * s2
		d2 = 2 / d1
		for j := range x {
			grad[j] += d2 * (float64(j) - s3) * t
			d2 *= d1
		}
	}
	t := x[1] - x[0]*x[0] - 1
	grad[0] += x[0] * (2 - 4*t)
	grad[1] += 2 * t
}

func (Watson) Hess(hess mat.MutableSymmetric, x []float64) {
	dim := len(x)
	if dim != hess.SymmetricDim() {
		panic("incorrect size of the Hessian")
	}

	for j := 0; j < dim; j++ {
		for k := j; k < dim; k++ {
			hess.SetSym(j, k, 0)
		}
	}
	for i := 1; i <= 29; i++ {
		d1 := float64(i) / 29
		d2 := 1.0
		var s1 float64
		for j := 1; j < dim; j++ {
			s1 += float64(j) * d2 * x[j]
			d2 *= d1
		}

		d2 = 1.0
		var s2 float64
		for _, v := range x {
			s2 += d2 * v
			d2 *= d1
		}

		t := s1 - s2*s2 - 1
		s3 := 2 * d1 * s2
		d2 = 2 / d1
		th := 2 * d1 * d1 * t
		for j := 0; j < dim; j++ {
			v := float64(j) - s3
			d3 := 1 / d1
			for k := 0; k <= j; k++ {
				hess.SetSym(k, j, hess.At(k, j)+d2*d3*(v*(float64(k)-s3)-th))
				d3 *= d1
			}
			d2 *= d1
		}
	}
	t1 := x[1] - x[0]*x[0] - 1
	hess.SetSym(0, 0, hess.At(0, 0)+8*x[0]*x[0]+2-4*t1)
	hess.SetSym(0, 1, hess.At(0, 1)-4*x[0])
	hess.SetSym(1, 1, hess.At(1, 1)+2)
}