1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fourier
import "gonum.org/v1/gonum/dsp/fourier/internal/fftpack"
// FFT implements Fast Fourier Transform and its inverse for real sequences.
type FFT struct {
work []float64
ifac [15]int
// real temporarily store complex data as
// pairs of real values to allow passing to
// the backing code. The length of real
// must always be half the length of work.
real []float64
}
// NewFFT returns an FFT initialized for work on sequences of length n.
func NewFFT(n int) *FFT {
var t FFT
t.Reset(n)
return &t
}
// Len returns the length of the acceptable input.
func (t *FFT) Len() int { return len(t.real) }
// Reset reinitializes the FFT for work on sequences of length n.
func (t *FFT) Reset(n int) {
if 2*n <= cap(t.work) {
t.work = t.work[:2*n]
t.real = t.real[:n]
} else {
t.work = make([]float64, 2*n)
t.real = make([]float64, n)
}
fftpack.Rffti(n, t.work, t.ifac[:])
}
// Coefficients computes the Fourier coefficients of the input sequence,
// converting the time series in seq into the frequency spectrum, placing
// the result in dst and returning it. This transform is unnormalized; a
// call to Coefficients followed by a call of Sequence will multiply the
// input sequence by the length of the sequence.
//
// If the length of seq is not t.Len(), Coefficients will panic.
// If dst is nil, a new slice is allocated and returned. If dst is not nil and
// the length of dst does not equal t.Len()/2+1, Coefficients will panic.
func (t *FFT) Coefficients(dst []complex128, seq []float64) []complex128 {
if len(seq) != t.Len() {
panic("fourier: sequence length mismatch")
}
if dst == nil {
dst = make([]complex128, t.Len()/2+1)
} else if len(dst) != t.Len()/2+1 {
panic("fourier: destination length mismatch")
}
copy(t.real, seq)
fftpack.Rfftf(len(t.real), t.real, t.work, t.ifac[:])
dst[0] = complex(t.real[0], 0)
if len(seq) < 2 {
return dst
}
if len(seq)%2 == 1 {
dst[len(dst)-1] = complex(t.real[len(t.real)-2], t.real[len(t.real)-1])
} else {
dst[len(dst)-1] = complex(t.real[len(t.real)-1], 0)
}
for i := 1; i < len(dst)-1; i++ {
dst[i] = complex(t.real[2*i-1], t.real[2*i])
}
return dst
}
// Sequence computes the real periodic sequence from the Fourier coefficients,
// converting the frequency spectrum in coeff into a time series, placing the
// result in dst and returning it. This transform is unnormalized; a call to
// Coefficients followed by a call of Sequence will multiply the input sequence
// by the length of the sequence.
//
// If the length of coeff is not t.Len()/2+1, Sequence will panic.
// If dst is nil, a new slice is allocated and returned. If dst is not nil and
// the length of dst does not equal the length of coeff, Sequence will panic.
func (t *FFT) Sequence(dst []float64, coeff []complex128) []float64 {
if len(coeff) != t.Len()/2+1 {
panic("fourier: coefficients length mismatch")
}
if dst == nil {
dst = make([]float64, t.Len())
} else if len(dst) != t.Len() {
panic("fourier: destination length mismatch")
}
dst[0] = real(coeff[0])
if len(dst) < 2 {
return dst
}
nf := coeff[len(coeff)-1]
if len(dst)%2 == 1 {
dst[len(dst)-2] = real(nf)
dst[len(dst)-1] = imag(nf)
} else {
dst[len(dst)-1] = real(nf)
}
for i, cv := range coeff[1 : len(coeff)-1] {
dst[2*i+1] = real(cv)
dst[2*i+2] = imag(cv)
}
fftpack.Rfftb(len(dst), dst, t.work, t.ifac[:])
return dst
}
// Freq returns the relative frequency center for coefficient i.
// Freq will panic if i is negative or greater than or equal to t.Len().
func (t *FFT) Freq(i int) float64 {
if i < 0 || t.Len() <= i {
panic("fourier: index out of range")
}
step := 1 / float64(t.Len())
return step * float64(i)
}
// CmplxFFT implements Fast Fourier Transform and its inverse for complex sequences.
type CmplxFFT struct {
work []float64
ifac [15]int
// real temporarily store complex data as
// pairs of real values to allow passing to
// the backing code. The length of real
// must always be half the length of work.
real []float64
}
// NewCmplxFFT returns an CmplxFFT initialized for work on sequences of length n.
func NewCmplxFFT(n int) *CmplxFFT {
var t CmplxFFT
t.Reset(n)
return &t
}
// Len returns the length of the acceptable input.
func (t *CmplxFFT) Len() int { return len(t.work) / 4 }
// Reset reinitializes the FFT for work on sequences of length n.
func (t *CmplxFFT) Reset(n int) {
if 4*n <= cap(t.work) {
t.work = t.work[:4*n]
t.real = t.real[:2*n]
} else {
t.work = make([]float64, 4*n)
t.real = make([]float64, 2*n)
}
fftpack.Cffti(n, t.work, t.ifac[:])
}
// Coefficients computes the Fourier coefficients of a complex input sequence,
// converting the time series in seq into the frequency spectrum, placing
// the result in dst and returning it. This transform is unnormalized; a call
// to Coefficients followed by a call of Sequence will multiply the input
// sequence by the length of the sequence.
//
// If the length of seq is not t.Len(), Coefficients will panic.
// If dst is nil, a new slice is allocated and returned. If dst is not nil and
// the length of dst does not equal the length of seq, Coefficients will panic.
// It is safe to use the same slice for dst and seq.
func (t *CmplxFFT) Coefficients(dst, seq []complex128) []complex128 {
if len(seq) != t.Len() {
panic("fourier: sequence length mismatch")
}
if dst == nil {
dst = make([]complex128, len(seq))
} else if len(dst) != len(seq) {
panic("fourier: destination length mismatch")
}
for i, cv := range seq {
t.real[2*i] = real(cv)
t.real[2*i+1] = imag(cv)
}
fftpack.Cfftf(len(dst), t.real, t.work, t.ifac[:])
for i := range dst {
dst[i] = complex(t.real[2*i], t.real[2*i+1])
}
return dst
}
// Sequence computes the complex periodic sequence from the Fourier coefficients,
// converting the frequency spectrum in coeff into a time series, placing the
// result in dst and returning it. This transform is unnormalized; a call to
// Coefficients followed by a call of Sequence will multiply the input sequence
// by the length of the sequence.
//
// If the length of coeff is not t.Len(), Sequence will panic.
// If dst is nil, a new slice is allocated and returned. If dst is not nil and
// the length of dst does not equal the length of coeff, Sequence will panic.
// It is safe to use the same slice for dst and coeff.
func (t *CmplxFFT) Sequence(dst, coeff []complex128) []complex128 {
if len(coeff) != t.Len() {
panic("fourier: coefficients length mismatch")
}
if dst == nil {
dst = make([]complex128, len(coeff))
} else if len(dst) != len(coeff) {
panic("fourier: destination length mismatch")
}
for i, cv := range coeff {
t.real[2*i] = real(cv)
t.real[2*i+1] = imag(cv)
}
fftpack.Cfftb(len(dst), t.real, t.work, t.ifac[:])
for i := range dst {
dst[i] = complex(t.real[2*i], t.real[2*i+1])
}
return dst
}
// Freq returns the relative frequency center for coefficient i.
// Freq will panic if i is negative or greater than or equal to t.Len().
func (t *CmplxFFT) Freq(i int) float64 {
if i < 0 || t.Len() <= i {
panic("fourier: index out of range")
}
step := 1 / float64(t.Len())
if i < (t.Len()-1)/2+1 {
return step * float64(i)
}
return step * float64(i-t.Len())
}
// ShiftIdx returns a shifted index into a slice of coefficients
// returned by the CmplxFFT so that indexing into the coefficients
// places the zero frequency component at the center of the spectrum.
// ShiftIdx will panic if i is negative or greater than or equal to
// t.Len().
func (t *CmplxFFT) ShiftIdx(i int) int {
if i < 0 || t.Len() <= i {
panic("fourier: index out of range")
}
h := t.Len() / 2
if i < h {
return i + (t.Len()+1)/2
}
return i - h
}
// UnshiftIdx returns inverse of ShiftIdx. UnshiftIdx will panic if i is
// negative or greater than or equal to t.Len().
func (t *CmplxFFT) UnshiftIdx(i int) int {
if i < 0 || t.Len() <= i {
panic("fourier: index out of range")
}
h := (t.Len() + 1) / 2
if i < h {
return i + t.Len()/2
}
return i - h
}
|