1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fourier_test
import (
"fmt"
"math"
"math/cmplx"
"gonum.org/v1/gonum/dsp/fourier"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/mat"
)
func ExampleFFT_Coefficients() {
// Samples is a set of samples over a given period.
samples := []float64{1, 0, 2, 0, 4, 0, 2, 0}
period := float64(len(samples))
// Initialize an FFT and perform the analysis.
fft := fourier.NewFFT(len(samples))
coeff := fft.Coefficients(nil, samples)
for i, c := range coeff {
fmt.Printf("freq=%v cycles/period, magnitude=%v, phase=%.4g\n",
fft.Freq(i)*period, cmplx.Abs(c), cmplx.Phase(c))
}
// Output:
//
// freq=0 cycles/period, magnitude=9, phase=0
// freq=1 cycles/period, magnitude=3, phase=3.142
// freq=2 cycles/period, magnitude=1, phase=-0
// freq=3 cycles/period, magnitude=3, phase=3.142
// freq=4 cycles/period, magnitude=9, phase=0
}
func ExampleFFT_Coefficients_tone() {
// Tone is a set of samples over a second of a pure Middle C.
const (
mC = 261.625565 // Hz
samples = 44100
)
tone := make([]float64, samples)
for i := range tone {
tone[i] = math.Sin(mC * 2 * math.Pi * float64(i) / samples)
}
// Initialize an FFT and perform the analysis.
fft := fourier.NewFFT(samples)
coeff := fft.Coefficients(nil, tone)
var maxFreq, magnitude, mean float64
for i, c := range coeff {
m := cmplx.Abs(c)
mean += m
if m > magnitude {
magnitude = m
maxFreq = fft.Freq(i) * samples
}
}
fmt.Printf("freq=%v Hz, magnitude=%.0f, mean=%.4f\n", maxFreq, magnitude, mean/samples)
// Output:
//
// freq=262 Hz, magnitude=17296, mean=2.7835
}
func ExampleCmplxFFT_Coefficients() {
// Samples is a set of samples over a given period.
samples := []complex128{1, 0, 2, 0, 4, 0, 2, 0}
period := float64(len(samples))
// Initialize a complex FFT and perform the analysis.
fft := fourier.NewCmplxFFT(len(samples))
coeff := fft.Coefficients(nil, samples)
for i := range coeff {
// Center the spectrum.
i = fft.ShiftIdx(i)
fmt.Printf("freq=%v cycles/period, magnitude=%v, phase=%.4g\n",
fft.Freq(i)*period, cmplx.Abs(coeff[i]), cmplx.Phase(coeff[i]))
}
// Output:
//
// freq=-4 cycles/period, magnitude=9, phase=0
// freq=-3 cycles/period, magnitude=3, phase=3.142
// freq=-2 cycles/period, magnitude=1, phase=0
// freq=-1 cycles/period, magnitude=3, phase=3.142
// freq=0 cycles/period, magnitude=9, phase=0
// freq=1 cycles/period, magnitude=3, phase=3.142
// freq=2 cycles/period, magnitude=1, phase=0
// freq=3 cycles/period, magnitude=3, phase=3.142
}
func Example_fFT2() {
// This example shows how to perform a 2D fourier transform
// on an image. The transform identifies the lines present
// in the image.
// Image is a set of diagonal lines.
image := mat.NewDense(11, 11, []float64{
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
})
// Make appropriately sized real and complex FFT types.
r, c := image.Dims()
fft := fourier.NewFFT(c)
cfft := fourier.NewCmplxFFT(r)
// Only c/2+1 coefficients will be returned for
// the real FFT.
c = c/2 + 1
// Perform the first axis transform.
rows := make([]complex128, r*c)
for i := 0; i < r; i++ {
fft.Coefficients(rows[c*i:c*(i+1)], image.RawRowView(i))
}
// Perform the second axis transform, storing
// the result in freqs.
freqs := mat.NewDense(c, c, nil)
column := make([]complex128, r)
for j := 0; j < c; j++ {
for i := 0; i < r; i++ {
column[i] = rows[i*c+j]
}
cfft.Coefficients(column, column)
for i, v := range column[:c] {
freqs.Set(i, j, scalar.Round(cmplx.Abs(v), 1))
}
}
fmt.Printf("%v\n", mat.Formatted(freqs))
// Output:
//
// ⎡ 40 0.4 0.5 1.4 3.2 1.1⎤
// ⎢ 0.4 0.5 0.7 1.8 4 1.2⎥
// ⎢ 0.5 0.7 1.1 2.8 5.9 1.7⎥
// ⎢ 1.4 1.8 2.8 6.8 14.1 3.8⎥
// ⎢ 3.2 4 5.9 14.1 27.5 6.8⎥
// ⎣ 1.1 1.2 1.7 3.8 6.8 1.6⎦
}
func Example_cmplxFFT2() {
// Image is a set of diagonal lines.
image := mat.NewDense(11, 11, []float64{
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
})
// Make appropriately sized complex FFT.
// Rows and columns are the same, so the same
// CmplxFFT can be used for both axes.
r, c := image.Dims()
cfft := fourier.NewCmplxFFT(r)
// Perform the first axis transform.
rows := make([]complex128, r*c)
for i := 0; i < r; i++ {
row := rows[c*i : c*(i+1)]
for j, v := range image.RawRowView(i) {
row[j] = complex(v, 0)
}
cfft.Coefficients(row, row)
}
// Perform the second axis transform, storing
// the result in freqs.
freqs := mat.NewDense(c, c, nil)
column := make([]complex128, r)
for j := 0; j < c; j++ {
for i := 0; i < r; i++ {
column[i] = rows[i*c+j]
}
cfft.Coefficients(column, column)
for i, v := range column {
// Center the frequencies.
freqs.Set(cfft.UnshiftIdx(i), cfft.UnshiftIdx(j), scalar.Round(cmplx.Abs(v), 1))
}
}
fmt.Printf("%v\n", mat.Formatted(freqs))
// Output:
//
// ⎡ 1.6 6.8 3.8 1.7 1.2 1.1 1.1 1.4 2.6 3.9 1.1⎤
// ⎢ 6.8 27.5 14.1 5.9 4 3.2 3 3 3.9 3.2 3.9⎥
// ⎢ 3.8 14.1 6.8 2.8 1.8 1.4 1.2 1.1 1.4 3.9 2.6⎥
// ⎢ 1.7 5.9 2.8 1.1 0.7 0.5 0.5 0.5 1.1 3 1.4⎥
// ⎢ 1.2 4 1.8 0.7 0.5 0.4 0.4 0.5 1.2 3 1.1⎥
// ⎢ 1.1 3.2 1.4 0.5 0.4 40 0.4 0.5 1.4 3.2 1.1⎥
// ⎢ 1.1 3 1.2 0.5 0.4 0.4 0.5 0.7 1.8 4 1.2⎥
// ⎢ 1.4 3 1.1 0.5 0.5 0.5 0.7 1.1 2.8 5.9 1.7⎥
// ⎢ 2.6 3.9 1.4 1.1 1.2 1.4 1.8 2.8 6.8 14.1 3.8⎥
// ⎢ 3.9 3.2 3.9 3 3 3.2 4 5.9 14.1 27.5 6.8⎥
// ⎣ 1.1 3.9 2.6 1.4 1.1 1.1 1.2 1.7 3.8 6.8 1.6⎦
}
|