1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a translation of the FFTPACK cosq functions by
// Paul N Swarztrauber, placed in the public domain at
// http://www.netlib.org/fftpack/.
package fftpack
import "math"
// Cosqi initializes the array work which is used in both Cosqf
// and Cosqb. The prime factorization of n together with a
// tabulation of the trigonometric functions are computed and
// stored in work.
//
// Input parameter:
//
// n The length of the sequence to be transformed. the method
// is most efficient when n+1 is a product of small primes.
//
// Output parameters:
//
// work A work array which must be dimensioned at least 3*n.
// The same work array can be used for both Cosqf and Cosqb
// as long as n remains unchanged. Different work arrays
// are required for different values of n. The contents of
// work must not be changed between calls of Cosqf or Cosqb.
//
// ifac An integer work array of length at least 15.
func Cosqi(n int, work []float64, ifac []int) {
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
dt := 0.5 * math.Pi / float64(n)
for k := range work[:n] {
work[k] = math.Cos(float64(k+1) * dt)
}
Rffti(n, work[n:], ifac)
}
// Cosqf computes the Fast Fourier Transform of quarter wave data.
// That is, Cosqf computes the coefficients in a cosine series
// representation with only odd wave numbers. The transform is
// defined below at output parameter x.
//
// Cosqb is the unnormalized inverse of Cosqf since a call of Cosqf
// followed by a call of Cosqb will multiply the input sequence x
// by 4*n.
//
// The array work which is used by subroutine Cosqf must be
// initialized by calling subroutine Cosqi(n,work).
//
// Input parameters:
//
// n The length of the array x to be transformed. The method
// is most efficient when n is a product of small primes.
//
// x An array which contains the sequence to be transformed.
//
// work A work array which must be dimensioned at least 3*n
// in the program that calls Cosqf. The work array must be
// initialized by calling subroutine Cosqi(n,work) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
//
// ifac An integer work array of length at least 15.
//
// Output parameters:
//
// x for i=0, ..., n-1
// x[i] = x[i] + the sum from k=0 to k=n-2 of
// 2*x[k]*cos((2*i+1)*k*pi/(2*n))
//
// A call of Cosqf followed by a call of
// Cosqb will multiply the sequence x by 4*n.
// Therefore Cosqb is the unnormalized inverse
// of Cosqf.
//
// work Contains initialization calculations which must not
// be destroyed between calls of Cosqf or Cosqb.
func Cosqf(n int, x, work []float64, ifac []int) {
if len(x) < n {
panic("fourier: short sequence")
}
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n < 2 {
return
}
if n == 2 {
tsqx := math.Sqrt2 * x[1]
x[1] = x[0] - tsqx
x[0] += tsqx
return
}
cosqf1(n, x, work, work[n:], ifac)
}
func cosqf1(n int, x, w, xh []float64, ifac []int) {
for k := 1; k < (n+1)/2; k++ {
kc := n - k
xh[k] = x[k] + x[kc]
xh[kc] = x[k] - x[kc]
}
if n%2 == 0 {
xh[(n+1)/2] = 2 * x[(n+1)/2]
}
for k := 1; k < (n+1)/2; k++ {
kc := n - k
x[k] = w[k-1]*xh[kc] + w[kc-1]*xh[k]
x[kc] = w[k-1]*xh[k] - w[kc-1]*xh[kc]
}
if n%2 == 0 {
x[(n+1)/2] = w[(n-1)/2] * xh[(n+1)/2]
}
Rfftf(n, x, xh, ifac)
for i := 2; i < n; i += 2 {
x[i-1], x[i] = x[i-1]-x[i], x[i-1]+x[i]
}
}
// Cosqb computes the Fast Fourier Transform of quarter wave data.
// That is, Cosqb computes a sequence from its representation in
// terms of a cosine series with odd wave numbers. The transform
// is defined below at output parameter x.
//
// Cosqf is the unnormalized inverse of Cosqb since a call of Cosqb
// followed by a call of Cosqf will multiply the input sequence x
// by 4*n.
//
// The array work which is used by subroutine Cosqb must be
// initialized by calling subroutine Cosqi(n,work).
//
// Input parameters:
//
// n The length of the array x to be transformed. The method
// is most efficient when n is a product of small primes.
//
// x An array which contains the sequence to be transformed.
//
// work A work array which must be dimensioned at least 3*n
// in the program that calls Cosqb. The work array must be
// initialized by calling subroutine Cosqi(n,work) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
//
// ifac An integer work array of length at least 15.
//
// Output parameters:
//
// x for i=0, ..., n-1
// x[i]= the sum from k=0 to k=n-1 of
// 4*x[k]*cos((2*k+1)*i*pi/(2*n))
//
// A call of Cosqb followed by a call of
// Cosqf will multiply the sequence x by 4*n.
// Therefore Cosqf is the unnormalized inverse
// of Cosqb.
//
// work Contains initialization calculations which must not
// be destroyed between calls of Cosqb or Cosqf.
func Cosqb(n int, x, work []float64, ifac []int) {
if len(x) < n {
panic("fourier: short sequence")
}
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n < 2 {
x[0] *= 4
return
}
if n == 2 {
x[0], x[1] = 4*(x[0]+x[1]), 2*math.Sqrt2*(x[0]-x[1])
return
}
cosqb1(n, x, work, work[n:], ifac)
}
func cosqb1(n int, x, w, xh []float64, ifac []int) {
for i := 2; i < n; i += 2 {
x[i-1], x[i] = x[i-1]+x[i], x[i]-x[i-1]
}
x[0] *= 2
if n%2 == 0 {
x[n-1] *= 2
}
Rfftb(n, x, xh, ifac)
for k := 1; k < (n+1)/2; k++ {
kc := n - k
xh[k] = w[k-1]*x[kc] + w[kc-1]*x[k]
xh[kc] = w[k-1]*x[k] - w[kc-1]*x[kc]
}
if n%2 == 0 {
x[(n+1)/2] *= 2 * w[(n-1)/2]
}
for k := 1; k < (n+1)/2; k++ {
x[k] = xh[k] + xh[n-k]
x[n-k] = xh[k] - xh[n-k]
}
x[0] *= 2
}
|