1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a translation of the FFTPACK cost functions by
// Paul N Swarztrauber, placed in the public domain at
// http://www.netlib.org/fftpack/.
package fftpack
import "math"
// Costi initializes the array work which is used in subroutine
// Cost. The prime factorization of n together with a tabulation
// of the trigonometric functions are computed and stored in work.
//
// Input parameter:
//
// n The length of the sequence to be transformed. The method
// is most efficient when n-1 is a product of small primes.
//
// Output parameters:
//
// work A work array which must be dimensioned at least 3*n.
// Different work arrays are required for different values
// of n. The contents of work must not be changed between
// calls of Cost.
//
// ifac An integer work array of length at least 15.
func Costi(n int, work []float64, ifac []int) {
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n < 4 {
return
}
dt := math.Pi / float64(n-1)
for k := 1; k < n/2; k++ {
fk := float64(k)
work[k] = 2 * math.Sin(fk*dt)
work[n-k-1] = 2 * math.Cos(fk*dt)
}
Rffti(n-1, work[n:], ifac)
}
// Cost computes the Discrete Fourier Cosine Transform of an even
// sequence x(i). The transform is defined below at output parameter x.
//
// Cost is the unnormalized inverse of itself since a call of Cost
// followed by another call of Cost will multiply the input sequence
// x by 2*(n-1). The transform is defined below at output parameter x
//
// The array work which is used by subroutine Cost must be
// initialized by calling subroutine Costi(n,work).
//
// Input parameters:
//
// n The length of the sequence x. n must be greater than 1.
// The method is most efficient when n-1 is a product of
// small primes.
//
// x An array which contains the sequence to be transformed.
//
// work A work array which must be dimensioned at least 3*n
// in the program that calls Cost. The work array must be
// initialized by calling subroutine Costi(n,work) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
//
// ifac An integer work array of length at least 15.
//
// Output parameters:
//
// x for i=1,...,n
// x(i) = x(1)+(-1)**(i-1)*x(n)
// + the sum from k=2 to k=n-1
// 2*x(k)*cos((k-1)*(i-1)*pi/(n-1))
//
// A call of Cost followed by another call of
// Cost will multiply the sequence x by 2*(n-1).
// Hence Cost is the unnormalized inverse
// of itself.
//
// work Contains initialization calculations which must not be
// destroyed between calls of Cost.
//
// ifac An integer work array of length at least 15.
func Cost(n int, x, work []float64, ifac []int) {
if len(x) < n {
panic("fourier: short sequence")
}
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n < 2 {
return
}
switch n {
case 2:
x[0], x[1] = x[0]+x[1], x[0]-x[1]
case 3:
x1p3 := x[0] + x[2]
tx2 := 2 * x[1]
x[1] = x[0] - x[2]
x[0] = x1p3 + tx2
x[2] = x1p3 - tx2
default:
c1 := x[0] - x[n-1]
x[0] += x[n-1]
for k := 1; k < n/2; k++ {
kc := n - k - 1
t1 := x[k] + x[kc]
t2 := x[k] - x[kc]
c1 += work[kc] * t2
t2 *= work[k]
x[k] = t1 - t2
x[kc] = t1 + t2
}
if n%2 != 0 {
x[n/2] *= 2
}
Rfftf(n-1, x, work[n:], ifac)
xim2 := x[1]
x[1] = c1
for i := 3; i < n; i += 2 {
xi := x[i]
x[i] = x[i-2] - x[i-1]
x[i-1] = xim2
xim2 = xi
}
if n%2 != 0 {
x[n-1] = xim2
}
}
}
|