1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a translation of the FFTPACK rfft functions by
// Paul N Swarztrauber, placed in the public domain at
// http://www.netlib.org/fftpack/.
package fftpack
import (
"math"
"math/cmplx"
)
// Rffti initializes the array work which is used in both Rfftf
// and Rfftb. The prime factorization of n together with a
// tabulation of the trigonometric functions are computed and
// stored in work.
//
// Input parameter:
//
// n The length of the sequence to be transformed.
//
// Output parameters:
//
// work A work array which must be dimensioned at least 2*n.
// The same work array can be used for both Rfftf and Rfftb
// as long as n remains unchanged. different work arrays
// are required for different values of n. The contents of
// work must not be changed between calls of Rfftf or Rfftb.
//
// ifac A work array containing the factors of n. ifac must have
// length of at least 15.
func Rffti(n int, work []float64, ifac []int) {
if len(work) < 2*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n == 1 {
return
}
rffti1(n, work[n:2*n], ifac[:15])
}
func rffti1(n int, wa []float64, ifac []int) {
ntryh := [4]int{4, 2, 3, 5}
nl := n
nf := 0
outer:
for j, ntry := 0, 0; ; j++ {
if j < 4 {
ntry = ntryh[j]
} else {
ntry += 2
}
for {
if nl%ntry != 0 {
continue outer
}
ifac[nf+2] = ntry
nl /= ntry
nf++
if ntry == 2 && nf != 1 {
for i := 1; i < nf; i++ {
ib := nf - i + 1
ifac[ib+1] = ifac[ib]
}
ifac[2] = 2
}
if nl == 1 {
break outer
}
}
}
ifac[0] = n
ifac[1] = nf
if nf == 1 {
return
}
argh := 2 * math.Pi / float64(n)
is := 0
l1 := 1
for k1 := 0; k1 < nf-1; k1++ {
ip := ifac[k1+2]
ld := 0
l2 := l1 * ip
ido := n / l2
for j := 0; j < ip-1; j++ {
ld += l1
i := is
fi := 0.0
argld := float64(ld) * argh
for ii := 2; ii < ido; ii += 2 {
fi++
arg := fi * argld
wa[i] = math.Cos(arg)
wa[i+1] = math.Sin(arg)
i += 2
}
is += ido
}
l1 = l2
}
}
// Rfftf computes the Fourier coefficients of a real perodic sequence
// (Fourier analysis). The transform is defined below at output
// parameter r.
//
// Input parameters:
//
// n The length of the array r to be transformed. The method
// is most efficient when n is a product of small primes.
// n may change so long as different work arrays are provided.
//
// r A real array of length n which contains the sequence
// to be transformed.
//
// work a work array which must be dimensioned at least 2*n.
// in the program that calls Rfftf. the work array must be
// initialized by calling subroutine rffti(n,work,ifac) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged. Thus subsequent
// transforms can be obtained faster than the first.
// The same work array can be used by Rfftf and Rfftb.
//
// ifac A work array containing the factors of n. ifac must have
// length of at least 15.
//
// Output parameters:
//
// r r[0] = the sum from i=0 to i=n-1 of r[i]
//
// if n is even set l=n/2, if n is odd set l = (n+1)/2
// then for k = 1, ..., l-1
// r[2*k-1] = the sum from i = 0 to i = n-1 of
// r[i]*cos(k*i*2*pi/n)
// r[2*k] = the sum from i = 0 to i = n-1 of
// -r[i]*sin(k*i*2*pi/n)
//
// if n is even
// r[n-1] = the sum from i = 0 to i = n-1 of
// (-1)^i*r[i]
//
// This transform is unnormalized since a call of Rfftf
// followed by a call of Rfftb will multiply the input
// sequence by n.
//
// work contains results which must not be destroyed between
// calls of Rfftf or Rfftb.
// ifac contains results which must not be destroyed between
// calls of Rfftf or Rfftb.
func Rfftf(n int, r, work []float64, ifac []int) {
if len(r) < n {
panic("fourier: short sequence")
}
if len(work) < 2*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n == 1 {
return
}
rfftf1(n, r[:n], work[:n], work[n:2*n], ifac[:15])
}
func rfftf1(n int, c, ch, wa []float64, ifac []int) {
nf := ifac[1]
na := true
l2 := n
iw := n - 1
for k1 := 1; k1 <= nf; k1++ {
kh := nf - k1
ip := ifac[kh+2]
l1 := l2 / ip
ido := n / l2
idl1 := ido * l1
iw -= (ip - 1) * ido
na = !na
switch ip {
case 4:
ix2 := iw + ido
ix3 := ix2 + ido
if na {
radf4(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:])
} else {
radf4(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:])
}
case 2:
if na {
radf2(ido, l1, ch, c, wa[iw:])
} else {
radf2(ido, l1, c, ch, wa[iw:])
}
case 3:
ix2 := iw + ido
if na {
radf3(ido, l1, ch, c, wa[iw:], wa[ix2:])
} else {
radf3(ido, l1, c, ch, wa[iw:], wa[ix2:])
}
case 5:
ix2 := iw + ido
ix3 := ix2 + ido
ix4 := ix3 + ido
if na {
radf5(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
} else {
radf5(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
}
default:
if ido == 1 {
na = !na
}
if na {
radfg(ido, ip, l1, idl1, ch, ch, ch, c, c, wa[iw:])
na = false
} else {
radfg(ido, ip, l1, idl1, c, c, c, ch, ch, wa[iw:])
na = true
}
}
l2 = l1
}
if na {
return
}
for i := 0; i < n; i++ {
c[i] = ch[i]
}
}
func radf2(ido, l1 int, cc, ch, wa1 []float64) {
cc3 := newThreeArray(ido, l1, 2, cc)
ch3 := newThreeArray(ido, 2, l1, ch)
for k := 0; k < l1; k++ {
ch3.set(0, 0, k, cc3.at(0, k, 0)+cc3.at(0, k, 1))
ch3.set(ido-1, 1, k, cc3.at(0, k, 0)-cc3.at(0, k, 1))
}
if ido < 2 {
return
}
if ido > 2 {
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
t2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1)
ch3.setCmplx(i-1, 0, k, cc3.atCmplx(i-1, k, 0)+t2)
// This is left as conj(z1)-conj(z2) rather than conj(z1-z2)
// to retain current signed zero behaviour.
ch3.setCmplx(ic-1, 1, k, cmplx.Conj(cc3.atCmplx(i-1, k, 0))-cmplx.Conj(t2))
}
}
if ido%2 == 1 {
return
}
}
for k := 0; k < l1; k++ {
ch3.set(0, 1, k, -cc3.at(ido-1, k, 1))
ch3.set(ido-1, 0, k, cc3.at(ido-1, k, 0))
}
}
func radf3(ido, l1 int, cc, ch, wa1, wa2 []float64) {
const (
taur = -0.5
taui = 0.866025403784439 // sqrt(3)/2
)
cc3 := newThreeArray(ido, l1, 3, cc)
ch3 := newThreeArray(ido, 3, l1, ch)
for k := 0; k < l1; k++ {
cr2 := cc3.at(0, k, 1) + cc3.at(0, k, 2)
ch3.set(0, 0, k, cc3.at(0, k, 0)+cr2)
ch3.set(0, 2, k, taui*(cc3.at(0, k, 2)-cc3.at(0, k, 1)))
ch3.set(ido-1, 1, k, cc3.at(0, k, 0)+taur*cr2)
}
if ido < 2 {
return
}
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
d2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1)
d3 := complex(wa2[i-2], -wa2[i-1]) * cc3.atCmplx(i-1, k, 2)
c2 := d2 + d3
ch3.setCmplx(i-1, 0, k, cc3.atCmplx(i-1, k, 0)+c2)
t2 := cc3.atCmplx(i-1, k, 0) + scale(taur, c2)
t3 := scale(taui, cmplx.Conj(swap(d2-d3)))
ch3.setCmplx(i-1, 2, k, t2+t3)
ch3.setCmplx(ic-1, 1, k, cmplx.Conj(t2-t3))
}
}
}
func radf4(ido, l1 int, cc, ch, wa1, wa2, wa3 []float64) {
const hsqt2 = math.Sqrt2 / 2
cc3 := newThreeArray(ido, l1, 4, cc)
ch3 := newThreeArray(ido, 4, l1, ch)
for k := 0; k < l1; k++ {
tr1 := cc3.at(0, k, 1) + cc3.at(0, k, 3)
tr2 := cc3.at(0, k, 0) + cc3.at(0, k, 2)
ch3.set(0, 0, k, tr1+tr2)
ch3.set(ido-1, 3, k, tr2-tr1)
ch3.set(ido-1, 1, k, cc3.at(0, k, 0)-cc3.at(0, k, 2))
ch3.set(0, 2, k, cc3.at(0, k, 3)-cc3.at(0, k, 1))
}
if ido < 2 {
return
}
if ido > 2 {
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
c2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1)
c3 := complex(wa2[i-2], -wa2[i-1]) * cc3.atCmplx(i-1, k, 2)
c4 := complex(wa3[i-2], -wa3[i-1]) * cc3.atCmplx(i-1, k, 3)
t1 := c2 + c4
t2 := cc3.atCmplx(i-1, k, 0) + c3
t3 := cc3.atCmplx(i-1, k, 0) - c3
t4 := cmplx.Conj(c4 - c2)
ch3.setCmplx(i-1, 0, k, t1+t2)
ch3.setCmplx(ic-1, 3, k, cmplx.Conj(t2-t1))
ch3.setCmplx(i-1, 2, k, swap(t4)+t3)
ch3.setCmplx(ic-1, 1, k, cmplx.Conj(t3-swap(t4)))
}
}
if ido%2 == 1 {
return
}
}
for k := 0; k < l1; k++ {
ti1 := -hsqt2 * (cc3.at(ido-1, k, 1) + cc3.at(ido-1, k, 3))
tr1 := hsqt2 * (cc3.at(ido-1, k, 1) - cc3.at(ido-1, k, 3))
ch3.set(ido-1, 0, k, tr1+cc3.at(ido-1, k, 0))
ch3.set(ido-1, 2, k, cc3.at(ido-1, k, 0)-tr1)
ch3.set(0, 1, k, ti1-cc3.at(ido-1, k, 2))
ch3.set(0, 3, k, ti1+cc3.at(ido-1, k, 2))
}
}
func radf5(ido, l1 int, cc, ch, wa1, wa2, wa3, wa4 []float64) {
const (
tr11 = 0.309016994374947
ti11 = 0.951056516295154
tr12 = -0.809016994374947
ti12 = 0.587785252292473
)
cc3 := newThreeArray(ido, l1, 5, cc)
ch3 := newThreeArray(ido, 5, l1, ch)
for k := 0; k < l1; k++ {
cr2 := cc3.at(0, k, 4) + cc3.at(0, k, 1)
cr3 := cc3.at(0, k, 3) + cc3.at(0, k, 2)
ci4 := cc3.at(0, k, 3) - cc3.at(0, k, 2)
ci5 := cc3.at(0, k, 4) - cc3.at(0, k, 1)
ch3.set(0, 0, k, cc3.at(0, k, 0)+cr2+cr3)
ch3.set(ido-1, 1, k, cc3.at(0, k, 0)+tr11*cr2+tr12*cr3)
ch3.set(0, 2, k, ti11*ci5+ti12*ci4)
ch3.set(ido-1, 3, k, cc3.at(0, k, 0)+tr12*cr2+tr11*cr3)
ch3.set(0, 4, k, ti12*ci5-ti11*ci4)
}
if ido < 2 {
return
}
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
d2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1)
d3 := complex(wa2[i-2], -wa2[i-1]) * cc3.atCmplx(i-1, k, 2)
d4 := complex(wa3[i-2], -wa3[i-1]) * cc3.atCmplx(i-1, k, 3)
d5 := complex(wa4[i-2], -wa4[i-1]) * cc3.atCmplx(i-1, k, 4)
c2 := d2 + d5
c3 := d3 + d4
c4 := cmplx.Conj(swap(d3 - d4))
c5 := cmplx.Conj(swap(d2 - d5))
ch3.setCmplx(i-1, 0, k, cc3.atCmplx(i-1, k, 0)+c2+c3)
t2 := cc3.atCmplx(i-1, k, 0) + scale(tr11, c2) + scale(tr12, c3)
t3 := cc3.atCmplx(i-1, k, 0) + scale(tr12, c2) + scale(tr11, c3)
t4 := scale(ti12, c5) - scale(ti11, c4)
t5 := scale(ti11, c5) + scale(ti12, c4)
ch3.setCmplx(ic-1, 1, k, cmplx.Conj(t2-t5))
ch3.setCmplx(i-1, 2, k, t2+t5)
ch3.setCmplx(ic-1, 3, k, cmplx.Conj(t3-t4))
ch3.setCmplx(i-1, 4, k, t3+t4)
}
}
}
func radfg(ido, ip, l1, idl1 int, cc, c1, c2, ch, ch2, wa []float64) {
cc3 := newThreeArray(ido, ip, l1, cc)
c13 := newThreeArray(ido, l1, ip, c1)
ch3 := newThreeArray(ido, l1, ip, ch)
c2m := newTwoArray(idl1, ip, c2)
ch2m := newTwoArray(idl1, ip, ch2)
arg := 2 * math.Pi / float64(ip)
dcp := math.Cos(arg)
dsp := math.Sin(arg)
ipph := (ip + 1) / 2
nbd := (ido - 1) / 2
if ido == 1 {
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, 0, ch2m.at(ik, 0))
}
} else {
for ik := 0; ik < idl1; ik++ {
ch2m.set(ik, 0, c2m.at(ik, 0))
}
for j := 1; j < ip; j++ {
for k := 0; k < l1; k++ {
ch3.set(0, k, j, c13.at(0, k, j))
}
}
is := -ido - 1
if nbd > l1 {
for j := 1; j < ip; j++ {
is += ido
for k := 0; k < l1; k++ {
idij := is
for i := 2; i < ido; i += 2 {
idij += 2
ch3.setCmplx(i-1, k, j, complex(wa[idij-1], -wa[idij])*c13.atCmplx(i-1, k, j))
}
}
}
} else {
for j := 1; j < ip; j++ {
is += ido
idij := is
for i := 2; i < ido; i += 2 {
idij += 2
for k := 0; k < l1; k++ {
ch3.setCmplx(i-1, k, j, complex(wa[idij-1], -wa[idij])*c13.atCmplx(i-1, k, j))
}
}
}
}
if nbd < l1 {
for j := 1; j < ipph; j++ {
jc := ip - j
for i := 2; i < ido; i += 2 {
for k := 0; k < l1; k++ {
c13.setCmplx(i-1, k, j, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc))
c13.setCmplx(i-1, k, jc, cmplx.Conj(swap(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc))))
}
}
}
} else {
for j := 1; j < ipph; j++ {
jc := ip - j
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
c13.setCmplx(i-1, k, j, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc))
c13.setCmplx(i-1, k, jc, cmplx.Conj(swap(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc))))
}
}
}
}
}
for j := 1; j < ipph; j++ {
jc := ip - j
for k := 0; k < l1; k++ {
c13.set(0, k, j, ch3.at(0, k, j)+ch3.at(0, k, jc))
c13.set(0, k, jc, ch3.at(0, k, jc)-ch3.at(0, k, j))
}
}
ar1 := 1.0
ai1 := 0.0
for l := 1; l < ipph; l++ {
lc := ip - l
ar1h := dcp*ar1 - dsp*ai1
ai1 = dcp*ai1 + dsp*ar1
ar1 = ar1h
for ik := 0; ik < idl1; ik++ {
ch2m.set(ik, l, c2m.at(ik, 0)+ar1*c2m.at(ik, 1))
ch2m.set(ik, lc, ai1*c2m.at(ik, ip-1))
}
dc2 := ar1
ds2 := ai1
ar2 := ar1
ai2 := ai1
for j := 2; j < ipph; j++ {
jc := ip - j
ar2h := dc2*ar2 - ds2*ai2
ai2 = dc2*ai2 + ds2*ar2
ar2 = ar2h
for ik := 0; ik < idl1; ik++ {
ch2m.add(ik, l, ar2*c2m.at(ik, j))
ch2m.add(ik, lc, ai2*c2m.at(ik, jc))
}
}
}
for j := 1; j < ipph; j++ {
for ik := 0; ik < idl1; ik++ {
ch2m.add(ik, 0, c2m.at(ik, j))
}
}
if ido < l1 {
for i := 0; i < ido; i++ {
for k := 0; k < l1; k++ {
cc3.set(i, 0, k, ch3.at(i, k, 0))
}
}
} else {
for k := 0; k < l1; k++ {
for i := 0; i < ido; i++ {
cc3.set(i, 0, k, ch3.at(i, k, 0))
}
}
}
for j := 1; j < ipph; j++ {
jc := ip - j
j2 := 2 * j
for k := 0; k < l1; k++ {
cc3.set(ido-1, j2-1, k, ch3.at(0, k, j))
cc3.set(0, j2, k, ch3.at(0, k, jc))
}
}
if ido == 1 {
return
}
if nbd < l1 {
for j := 1; j < ipph; j++ {
jc := ip - j
j2 := 2 * j
for i := 2; i < ido; i += 2 {
ic := ido - i
for k := 0; k < l1; k++ {
cc3.setCmplx(i-1, j2, k, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc))
cc3.setCmplx(ic-1, j2-1, k, cmplx.Conj(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc)))
}
}
}
return
}
for j := 1; j < ipph; j++ {
jc := ip - j
j2 := 2 * j
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := ido - i
cc3.setCmplx(i-1, j2, k, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc))
cc3.setCmplx(ic-1, j2-1, k, cmplx.Conj(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc)))
}
}
}
}
// Rfftb computes the real perodic sequence from its Fourier
// coefficients (Fourier synthesis). The transform is defined
// below at output parameter r.
//
// Input parameters
//
// n The length of the array r to be transformed. The method
// is most efficient when n is a product of small primes.
// n may change so long as different work arrays are provided.
//
// r A real array of length n which contains the sequence
// to be transformed.
//
// work A work array which must be dimensioned at least 2*n.
// in the program that calls Rfftb. The work array must be
// initialized by calling subroutine rffti(n,work,ifac) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
// The same work array can be used by Rfftf and Rfftb.
//
// ifac A work array containing the factors of n. ifac must have
// length of at least 15.
//
// output parameters
//
// r for n even and for i = 0, ..., n
// r[i] = r[0]+(-1)^i*r[n-1]
// plus the sum from k=1 to k=n/2-1 of
// 2*r(2*k-1)*cos(k*i*2*pi/n)
// -2*r(2*k)*sin(k*i*2*pi/n)
//
// for n odd and for i = 0, ..., n-1
// r[i] = r[0] plus the sum from k=1 to k=(n-1)/2 of
// 2*r(2*k-1)*cos(k*i*2*pi/n)
// -2*r(2*k)*sin(k*i*2*pi/n)
//
// This transform is unnormalized since a call of Rfftf
// followed by a call of Rfftb will multiply the input
// sequence by n.
//
// work Contains results which must not be destroyed between
// calls of Rfftf or Rfftb.
// ifac Contains results which must not be destroyed between
// calls of Rfftf or Rfftb.
func Rfftb(n int, r, work []float64, ifac []int) {
if len(r) < n {
panic("fourier: short sequence")
}
if len(work) < 2*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n == 1 {
return
}
rfftb1(n, r[:n], work[:n], work[n:2*n], ifac[:15])
}
func rfftb1(n int, c, ch, wa []float64, ifac []int) {
nf := ifac[1]
na := false
l1 := 1
iw := 0
for k1 := 1; k1 <= nf; k1++ {
ip := ifac[k1+1]
l2 := ip * l1
ido := n / l2
idl1 := ido * l1
switch ip {
case 4:
ix2 := iw + ido
ix3 := ix2 + ido
if na {
radb4(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:])
} else {
radb4(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:])
}
na = !na
case 2:
if na {
radb2(ido, l1, ch, c, wa[iw:])
} else {
radb2(ido, l1, c, ch, wa[iw:])
}
na = !na
case 3:
ix2 := iw + ido
if na {
radb3(ido, l1, ch, c, wa[iw:], wa[ix2:])
} else {
radb3(ido, l1, c, ch, wa[iw:], wa[ix2:])
}
na = !na
case 5:
ix2 := iw + ido
ix3 := ix2 + ido
ix4 := ix3 + ido
if na {
radb5(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
} else {
radb5(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
}
na = !na
default:
if na {
radbg(ido, ip, l1, idl1, ch, ch, ch, c, c, wa[iw:])
} else {
radbg(ido, ip, l1, idl1, c, c, c, ch, ch, wa[iw:])
}
if ido == 1 {
na = !na
}
}
l1 = l2
iw += (ip - 1) * ido
}
if na {
for i := 0; i < n; i++ {
c[i] = ch[i]
}
}
}
func radb2(ido, l1 int, cc, ch, wa1 []float64) {
cc3 := newThreeArray(ido, 2, l1, cc)
ch3 := newThreeArray(ido, l1, 2, ch)
for k := 0; k < l1; k++ {
ch3.set(0, k, 0, cc3.at(0, 0, k)+cc3.at(ido-1, 1, k))
ch3.set(0, k, 1, cc3.at(0, 0, k)-cc3.at(ido-1, 1, k))
}
if ido < 2 {
return
}
if ido > 2 {
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
ch3.setCmplx(i-1, k, 0, cc3.atCmplx(i-1, 0, k)+cmplx.Conj(cc3.atCmplx(ic-1, 1, k)))
t2 := cc3.atCmplx(i-1, 0, k) - cmplx.Conj(cc3.atCmplx(ic-1, 1, k))
ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*t2)
}
}
if ido%2 == 1 {
return
}
}
for k := 0; k < l1; k++ {
ch3.set(ido-1, k, 0, 2*cc3.at(ido-1, 0, k))
ch3.set(ido-1, k, 1, -2*cc3.at(0, 1, k))
}
}
func radb3(ido, l1 int, cc, ch, wa1, wa2 []float64) {
const (
taur = -0.5
taui = 0.866025403784439 // sqrt(3)/2
)
cc3 := newThreeArray(ido, 3, l1, cc)
ch3 := newThreeArray(ido, l1, 3, ch)
for k := 0; k < l1; k++ {
tr2 := cc3.at(ido-1, 1, k) + cc3.at(ido-1, 1, k)
cr2 := cc3.at(0, 0, k) + taur*tr2
ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2)
ci3 := taui * (cc3.at(0, 2, k) + cc3.at(0, 2, k))
ch3.set(0, k, 1, cr2-ci3)
ch3.set(0, k, 2, cr2+ci3)
}
if ido == 1 {
return
}
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
t2 := cc3.atCmplx(i-1, 2, k) + cmplx.Conj(cc3.atCmplx(ic-1, 1, k))
c2 := cc3.atCmplx(i-1, 0, k) + scale(taur, t2)
ch3.setCmplx(i-1, k, 0, cc3.atCmplx(i-1, 0, k)+t2)
c3 := scale(taui, cc3.atCmplx(i-1, 2, k)-cmplx.Conj(cc3.atCmplx(ic-1, 1, k)))
d2 := c2 - cmplx.Conj(swap(c3))
d3 := c2 + cmplx.Conj(swap(c3))
ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*d2)
ch3.setCmplx(i-1, k, 2, complex(wa2[i-2], wa2[i-1])*d3)
}
}
}
func radb4(ido, l1 int, cc, ch, wa1, wa2, wa3 []float64) {
cc3 := newThreeArray(ido, 4, l1, cc)
ch3 := newThreeArray(ido, l1, 4, ch)
for k := 0; k < l1; k++ {
tr1 := cc3.at(0, 0, k) - cc3.at(ido-1, 3, k)
tr2 := cc3.at(0, 0, k) + cc3.at(ido-1, 3, k)
tr3 := cc3.at(ido-1, 1, k) + cc3.at(ido-1, 1, k)
tr4 := cc3.at(0, 2, k) + cc3.at(0, 2, k)
ch3.set(0, k, 0, tr2+tr3)
ch3.set(0, k, 1, tr1-tr4)
ch3.set(0, k, 2, tr2-tr3)
ch3.set(0, k, 3, tr1+tr4)
}
if ido < 2 {
return
}
if ido > 2 {
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
t1 := cc3.atCmplx(i-1, 0, k) - cmplx.Conj(cc3.atCmplx(ic-1, 3, k))
t2 := cc3.atCmplx(i-1, 0, k) + cmplx.Conj(cc3.atCmplx(ic-1, 3, k))
t3 := cc3.atCmplx(i-1, 2, k) + cmplx.Conj(cc3.atCmplx(ic-1, 1, k))
t4 := swap(cc3.atCmplx(i-1, 2, k) - cmplx.Conj(cc3.atCmplx(ic-1, 1, k)))
ch3.setCmplx(i-1, k, 0, t2+t3)
c2 := t1 - cmplx.Conj(t4)
c3 := t2 - t3
c4 := t1 + cmplx.Conj(t4)
ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*c2)
ch3.setCmplx(i-1, k, 2, complex(wa2[i-2], wa2[i-1])*c3)
ch3.setCmplx(i-1, k, 3, complex(wa3[i-2], wa3[i-1])*c4)
}
}
if ido%2 == 1 {
return
}
}
for k := 0; k < l1; k++ {
tr1 := cc3.at(ido-1, 0, k) - cc3.at(ido-1, 2, k)
ti1 := cc3.at(0, 1, k) + cc3.at(0, 3, k)
tr2 := cc3.at(ido-1, 0, k) + cc3.at(ido-1, 2, k)
ti2 := cc3.at(0, 3, k) - cc3.at(0, 1, k)
ch3.set(ido-1, k, 0, tr2+tr2)
ch3.set(ido-1, k, 1, math.Sqrt2*(tr1-ti1))
ch3.set(ido-1, k, 2, ti2+ti2)
ch3.set(ido-1, k, 3, -math.Sqrt2*(tr1+ti1))
}
}
func radb5(ido, l1 int, cc, ch, wa1, wa2, wa3, wa4 []float64) {
const (
tr11 = 0.309016994374947
ti11 = 0.951056516295154
tr12 = -0.809016994374947
ti12 = 0.587785252292473
)
cc3 := newThreeArray(ido, 5, l1, cc)
ch3 := newThreeArray(ido, l1, 5, ch)
for k := 0; k < l1; k++ {
tr2 := cc3.at(ido-1, 1, k) + cc3.at(ido-1, 1, k)
tr3 := cc3.at(ido-1, 3, k) + cc3.at(ido-1, 3, k)
ti4 := cc3.at(0, 4, k) + cc3.at(0, 4, k)
ti5 := cc3.at(0, 2, k) + cc3.at(0, 2, k)
ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2+tr3)
cr2 := cc3.at(0, 0, k) + tr11*tr2 + tr12*tr3
cr3 := cc3.at(0, 0, k) + tr12*tr2 + tr11*tr3
ci4 := ti12*ti5 - ti11*ti4
ci5 := ti11*ti5 + ti12*ti4
ch3.set(0, k, 1, cr2-ci5)
ch3.set(0, k, 2, cr3-ci4)
ch3.set(0, k, 3, cr3+ci4)
ch3.set(0, k, 4, cr2+ci5)
}
if ido == 1 {
return
}
idp2 := ido + 1
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := idp2 - (i + 1)
t2 := cc3.atCmplx(i-1, 2, k) + cmplx.Conj(cc3.atCmplx(ic-1, 1, k))
t3 := cc3.atCmplx(i-1, 4, k) + cmplx.Conj(cc3.atCmplx(ic-1, 3, k))
t4 := cc3.atCmplx(i-1, 4, k) - cmplx.Conj(cc3.atCmplx(ic-1, 3, k))
t5 := cc3.atCmplx(i-1, 2, k) - cmplx.Conj(cc3.atCmplx(ic-1, 1, k))
ch3.setCmplx(i-1, k, 0, cc3.atCmplx(i-1, 0, k)+t2+t3)
c2 := cc3.atCmplx(i-1, 0, k) + scale(tr11, t2) + scale(tr12, t3)
c3 := cc3.atCmplx(i-1, 0, k) + scale(tr12, t2) + scale(tr11, t3)
c4 := scale(ti12, t5) - scale(ti11, t4)
c5 := scale(ti11, t5) + scale(ti12, t4)
d2 := c2 - cmplx.Conj(swap(c5))
d3 := c3 - cmplx.Conj(swap(c4))
d4 := c3 + cmplx.Conj(swap(c4))
d5 := c2 + cmplx.Conj(swap(c5))
ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*d2)
ch3.setCmplx(i-1, k, 2, complex(wa2[i-2], wa2[i-1])*d3)
ch3.setCmplx(i-1, k, 3, complex(wa3[i-2], wa3[i-1])*d4)
ch3.setCmplx(i-1, k, 4, complex(wa4[i-2], wa4[i-1])*d5)
}
}
}
func radbg(ido, ip, l1, idl1 int, cc, c1, c2, ch, ch2, wa []float64) {
cc3 := newThreeArray(ido, ip, l1, cc)
c13 := newThreeArray(ido, l1, ip, c1)
ch3 := newThreeArray(ido, l1, ip, ch)
c2m := newTwoArray(idl1, ip, c2)
ch2m := newTwoArray(idl1, ip, ch2)
arg := 2 * math.Pi / float64(ip)
dcp := math.Cos(arg)
dsp := math.Sin(arg)
ipph := (ip + 1) / 2
nbd := (ido - 1) / 2
if ido < l1 {
for i := 0; i < ido; i++ {
for k := 0; k < l1; k++ {
ch3.set(i, k, 0, cc3.at(i, 0, k))
}
}
} else {
for k := 0; k < l1; k++ {
for i := 0; i < ido; i++ {
ch3.set(i, k, 0, cc3.at(i, 0, k))
}
}
}
for j := 1; j < ipph; j++ {
jc := ip - j
j2 := 2 * j
for k := 0; k < l1; k++ {
ch3.set(0, k, j, cc3.at(ido-1, j2-1, k)+cc3.at(ido-1, j2-1, k))
ch3.set(0, k, jc, cc3.at(0, j2, k)+cc3.at(0, j2, k))
}
}
if ido != 1 {
if nbd < l1 {
for j := 1; j < ipph; j++ {
jc := ip - j
j2 := 2 * j
for i := 2; i < ido; i += 2 {
ic := ido - i
for k := 0; k < l1; k++ {
ch3.setCmplx(i-1, k, j, cc3.atCmplx(i-1, j2, k)+cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k)))
ch3.setCmplx(i-1, k, jc, cc3.atCmplx(i-1, j2, k)-cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k)))
}
}
}
} else {
for j := 1; j < ipph; j++ {
jc := ip - j
j2 := 2 * j
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ic := ido - i
ch3.setCmplx(i-1, k, j, cc3.atCmplx(i-1, j2, k)+cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k)))
ch3.setCmplx(i-1, k, jc, cc3.atCmplx(i-1, j2, k)-cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k)))
}
}
}
}
}
ar1 := 1.0
ai1 := 0.0
for l := 1; l < ipph; l++ {
lc := ip - l
ar1h := dcp*ar1 - dsp*ai1
ai1 = dcp*ai1 + dsp*ar1
ar1 = ar1h
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, l, ch2m.at(ik, 0)+ar1*ch2m.at(ik, 1))
c2m.set(ik, lc, ai1*ch2m.at(ik, ip-1))
}
dc2 := ar1
ds2 := ai1
ar2 := ar1
ai2 := ai1
for j := 2; j < ipph; j++ {
jc := ip - j
ar2h := dc2*ar2 - ds2*ai2
ai2 = dc2*ai2 + ds2*ar2
ar2 = ar2h
for ik := 0; ik < idl1; ik++ {
c2m.add(ik, l, ar2*ch2m.at(ik, j))
c2m.add(ik, lc, ai2*ch2m.at(ik, jc))
}
}
}
for j := 1; j < ipph; j++ {
for ik := 0; ik < idl1; ik++ {
ch2m.add(ik, 0, ch2m.at(ik, j))
}
}
for j := 1; j < ipph; j++ {
jc := ip - j
for k := 0; k < l1; k++ {
ch3.set(0, k, j, c13.at(0, k, j)-c13.at(0, k, jc))
ch3.set(0, k, jc, c13.at(0, k, j)+c13.at(0, k, jc))
}
}
if ido != 1 {
if nbd < l1 {
for j := 1; j < ipph; j++ {
jc := ip - j
for i := 2; i < ido; i += 2 {
for k := 0; k < l1; k++ {
ch3.setCmplx(i-1, k, j, c13.atCmplx(i-1, k, j)-cmplx.Conj(swap(c13.atCmplx(i-1, k, jc))))
ch3.setCmplx(i-1, k, jc, c13.atCmplx(i-1, k, j)+cmplx.Conj(swap(c13.atCmplx(i-1, k, jc))))
}
}
}
} else {
for j := 1; j < ipph; j++ {
jc := ip - j
for k := 0; k < l1; k++ {
for i := 2; i < ido; i += 2 {
ch3.setCmplx(i-1, k, j, c13.atCmplx(i-1, k, j)-cmplx.Conj(swap(c13.atCmplx(i-1, k, jc))))
ch3.setCmplx(i-1, k, jc, c13.atCmplx(i-1, k, j)+cmplx.Conj(swap(c13.atCmplx(i-1, k, jc))))
}
}
}
}
}
if ido == 1 {
return
}
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, 0, ch2m.at(ik, 0))
}
for j := 1; j < ip; j++ {
for k := 0; k < l1; k++ {
c13.set(0, k, j, ch3.at(0, k, j))
}
}
is := -ido - 1
if nbd > l1 {
for j := 1; j < ip; j++ {
is += ido
for k := 0; k < l1; k++ {
idij := is
for i := 2; i < ido; i += 2 {
idij += 2
c13.setCmplx(i-1, k, j, complex(wa[idij-1], wa[idij])*ch3.atCmplx(i-1, k, j))
}
}
}
return
}
for j := 1; j < ip; j++ {
is += ido
idij := is
for i := 2; i < ido; i += 2 {
idij += 2
for k := 0; k < l1; k++ {
c13.setCmplx(i-1, k, j, complex(wa[idij-1], wa[idij])*ch3.atCmplx(i-1, k, j))
}
}
}
}
|