1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a translation of the FFTPACK sinq functions by
// Paul N Swarztrauber, placed in the public domain at
// http://www.netlib.org/fftpack/.
package fftpack
import "math"
// Sinqi initializes the array work which is used in both Sinqf and
// Sinqb. The prime factorization of n together with a tabulation
// of the trigonometric functions are computed and stored in work.
//
// Input parameter:
//
// n The length of the sequence to be transformed. The method
// is most efficient when n+1 is a product of small primes.
//
// Output parameter:
//
// work A work array which must be dimensioned at least 3*n.
// The same work array can be used for both Sinqf and Sinqb
// as long as n remains unchanged. Different work arrays
// are required for different values of n. The contents of
// work must not be changed between calls of Sinqf or Sinqb.
//
// ifac An integer work array of length at least 15.
func Sinqi(n int, work []float64, ifac []int) {
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
dt := 0.5 * math.Pi / float64(n)
for k := range work[:n] {
work[k] = math.Cos(float64(k+1) * dt)
}
Rffti(n, work[n:], ifac)
}
// Sinqf computes the Fast Fourier Transform of quarter wave data.
// That is, Sinqf computes the coefficients in a sine series
// representation with only odd wave numbers. The transform is
// defined below at output parameter x.
//
// Sinqb is the unnormalized inverse of Sinqf since a call of Sinqf
// followed by a call of Sinqb will multiply the input sequence x
// by 4*n.
//
// The array work which is used by subroutine Sinqf must be
// initialized by calling subroutine Sinqi(n,work).
//
// Input parameters:
//
// n The length of the array x to be transformed. The method
// is most efficient when n is a product of small primes.
//
// x An array which contains the sequence to be transformed.
//
// work A work array which must be dimensioned at least 3*n.
// in the program that calls Sinqf. The work array must be
// initialized by calling subroutine Sinqi(n,work) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
//
// ifac An integer work array of length at least 15.
//
// Output parameters:
//
// x for i=0, ..., n-1
// x[i] = (-1)^(i)*x[n-1]
// + the sum from k=0 to k=n-2 of
// 2*x[k]*sin((2*i+1)*k*pi/(2*n))
//
// A call of Sinqf followed by a call of
// Sinqb will multiply the sequence x by 4*n.
// Therefore Sinqb is the unnormalized inverse
// of Sinqf.
//
// work Contains initialization calculations which must not
// be destroyed between calls of Sinqf or Sinqb.
func Sinqf(n int, x, work []float64, ifac []int) {
if len(x) < n {
panic("fourier: short sequence")
}
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
if n == 1 {
return
}
for k := 0; k < n/2; k++ {
kc := n - k - 1
x[k], x[kc] = x[kc], x[k]
}
Cosqf(n, x, work, ifac)
for k := 1; k < n; k += 2 {
x[k] = -x[k]
}
}
// Sinqb computes the Fast Fourier Transform of quarter wave data.
// That is, Sinqb computes a sequence from its representation in
// terms of a sine series with odd wave numbers. The transform is
// defined below at output parameter x.
//
// Sinqf is the unnormalized inverse of Sinqb since a call of Sinqb
// followed by a call of Sinqf will multiply the input sequence x
// by 4*n.
//
// The array work which is used by subroutine Sinqb must be
// initialized by calling subroutine Sinqi(n,work).
//
// Input parameters:
//
// n The length of the array x to be transformed. The method
// is most efficient when n is a product of small primes.
//
// x An array which contains the sequence to be transformed.
//
// work A work array which must be dimensioned at least 3*n.
// in the program that calls Sinqb. The work array must be
// initialized by calling subroutine Sinqi(n,work) and a
// different work array must be used for each different
// value of n. This initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
//
// ifac An integer work array of length at least 15.
//
// Output parameters:
//
// x for i=0, ..., n-1
// x[i]= the sum from k=0 to k=n-1 of
// 4*x[k]*sin((2*k+1)*i*pi/(2*n))
//
// A call of Sinqb followed by a call of
// Sinqf will multiply the sequence x by 4*n.
// Therefore Sinqf is the unnormalized inverse
// of Sinqb.
//
// work Contains initialization calculations which must not
// be destroyed between calls of Sinqb or Sinqf.
func Sinqb(n int, x, work []float64, ifac []int) {
if len(x) < n {
panic("fourier: short sequence")
}
if len(work) < 3*n {
panic("fourier: short work")
}
if len(ifac) < 15 {
panic("fourier: short ifac")
}
switch n {
case 1:
x[0] *= 4
fallthrough
case 0:
return
default:
for k := 1; k < n; k += 2 {
x[k] = -x[k]
}
Cosqb(n, x, work, ifac)
for k := 0; k < n/2; k++ {
kc := n - k - 1
x[k], x[kc] = x[kc], x[k]
}
}
}
|