File: window_example_test.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (159 lines) | stat: -rw-r--r-- 6,837 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package window_test

import (
	"fmt"
	"math"
	"math/cmplx"

	"gonum.org/v1/gonum/dsp/fourier"
	"gonum.org/v1/gonum/dsp/window"
)

func Example() {
	// The input sequence is a 2.5 period of the Sin function.
	src := make([]float64, 20)
	k := 5 * math.Pi / float64(len(src)-1)
	for i := range src {
		src[i] = math.Sin(k * float64(i))
	}

	// Initialize an FFT and perform the analysis.
	fft := fourier.NewFFT(len(src))
	coeff := fft.Coefficients(nil, src)

	// The result shows that width of the main lobe with center
	// between frequencies 0.1 and 0.15 is small, but that the
	// height of the side lobes is large.
	fmt.Println("Rectangular window (or no window):")
	for i, c := range coeff {
		fmt.Printf("freq=%.4f\tcycles/period, magnitude=%.4f,\tphase=%.4f\n",
			fft.Freq(i), cmplx.Abs(c), cmplx.Phase(c))
	}

	// Initialize an FFT and perform the analysis on a sequence
	// transformed by the Hamming window function.
	fft = fourier.NewFFT(len(src))
	coeff = fft.Coefficients(nil, window.Hamming(src))

	// The result shows that width of the main lobe is wider,
	// but height of the side lobes is lower.
	fmt.Println("Hamming window:")
	// The magnitude of all bins has been decreased by β.
	// Generally in an analysis amplification may be omitted, but to
	// make a comparable data, the result should be amplified by -β
	// of the window function — +5.37 dB for the Hamming window.
	//  -β = 20 log_10(amplifier).
	amplifier := math.Pow(10, 5.37/20.0)
	for i, c := range coeff {
		fmt.Printf("freq=%.4f\tcycles/period, magnitude=%.4f,\tphase=%.4f\n",
			fft.Freq(i), amplifier*cmplx.Abs(c), cmplx.Phase(c))
	}
	// Output:
	//
	// Rectangular window (or no window):
	// freq=0.0000	cycles/period, magnitude=2.2798,	phase=0.0000
	// freq=0.0500	cycles/period, magnitude=2.6542,	phase=0.1571
	// freq=0.1000	cycles/period, magnitude=5.3115,	phase=0.3142
	// freq=0.1500	cycles/period, magnitude=7.3247,	phase=-2.6704
	// freq=0.2000	cycles/period, magnitude=1.6163,	phase=-2.5133
	// freq=0.2500	cycles/period, magnitude=0.7681,	phase=-2.3562
	// freq=0.3000	cycles/period, magnitude=0.4385,	phase=-2.1991
	// freq=0.3500	cycles/period, magnitude=0.2640,	phase=-2.0420
	// freq=0.4000	cycles/period, magnitude=0.1530,	phase=-1.8850
	// freq=0.4500	cycles/period, magnitude=0.0707,	phase=-1.7279
	// freq=0.5000	cycles/period, magnitude=0.0000,	phase=0.0000
	// Hamming window:
	// freq=0.0000	cycles/period, magnitude=0.0542,	phase=3.1416
	// freq=0.0500	cycles/period, magnitude=0.8458,	phase=-2.9845
	// freq=0.1000	cycles/period, magnitude=7.1519,	phase=0.3142
	// freq=0.1500	cycles/period, magnitude=8.5907,	phase=-2.6704
	// freq=0.2000	cycles/period, magnitude=2.0804,	phase=0.6283
	// freq=0.2500	cycles/period, magnitude=0.0816,	phase=0.7854
	// freq=0.3000	cycles/period, magnitude=0.0156,	phase=-2.1991
	// freq=0.3500	cycles/period, magnitude=0.0224,	phase=-2.0420
	// freq=0.4000	cycles/period, magnitude=0.0163,	phase=-1.8850
	// freq=0.4500	cycles/period, magnitude=0.0083,	phase=-1.7279
	// freq=0.5000	cycles/period, magnitude=0.0000,	phase=0.0000
}

func ExampleHamming() {
	src := []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

	// Window functions change data in place. So, if input data
	// needs to stay unchanged, it must be copied.
	srcCpy := append([]float64(nil), src...)
	// Apply window function to srcCpy.
	dst := window.Hamming(srcCpy)

	// src is unchanged.
	fmt.Printf("src:    %f\n", src)
	// srcCpy is altered.
	fmt.Printf("srcCpy: %f\n", srcCpy)
	// dst mirrors the srcCpy slice.
	fmt.Printf("dst:    %f\n", dst)

	// Output:
	//
	// src:    [1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000]
	// srcCpy: [0.080000 0.104924 0.176995 0.288404 0.427077 0.577986 0.724780 0.851550 0.944558 0.993726 0.993726 0.944558 0.851550 0.724780 0.577986 0.427077 0.288404 0.176995 0.104924 0.080000]
	// dst:    [0.080000 0.104924 0.176995 0.288404 0.427077 0.577986 0.724780 0.851550 0.944558 0.993726 0.993726 0.944558 0.851550 0.724780 0.577986 0.427077 0.288404 0.176995 0.104924 0.080000]
}

func ExampleValues() {
	src := []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

	// Create a Sine Window lookup table.
	sine := window.NewValues(window.Sine, len(src))

	// Apply the transformation to the src.
	fmt.Printf("dst: %f\n", sine.Transform(src))

	// Output:
	//
	// dst: [0.000000 0.164595 0.324699 0.475947 0.614213 0.735724 0.837166 0.915773 0.969400 0.996584 0.996584 0.969400 0.915773 0.837166 0.735724 0.614213 0.475947 0.324699 0.164595 0.000000]
}

func ExampleValues_TransformTo_gabor() {
	src := []float64{1, 2, 1, 0, -1, -1, -2, -2, -1, -1,
		0, 1, 1, 2, 1, 0, -1, -2, -1, 0}

	// Create a Gaussian Window lookup table for 4 samples.
	gaussian := window.NewValues(window.Gaussian{0.5}.Transform, 4)

	// Prepare a destination.
	dst := make([]float64, 8)

	// Apply the transformation to the src, placing it in dst.
	for i := 0; i < len(src)-len(gaussian); i++ {
		gaussian.TransformTo(dst[0:len(gaussian)], src[i:i+len(gaussian)])

		// To perform the Gabor transform, we would calculate
		// the FFT on dst for each iteration.
		fmt.Printf("FFT(%f)\n", dst)
	}

	// Output:
	//
	// FFT([0.135335 1.601475 0.800737 0.000000 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.270671 0.800737 0.000000 -0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.135335 0.000000 -0.800737 -0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.000000 -0.800737 -0.800737 -0.270671 0.000000 0.000000 0.000000 0.000000])
	// FFT([-0.135335 -0.800737 -1.601475 -0.270671 0.000000 0.000000 0.000000 0.000000])
	// FFT([-0.135335 -1.601475 -1.601475 -0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([-0.270671 -1.601475 -0.800737 -0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([-0.270671 -0.800737 -0.800737 0.000000 0.000000 0.000000 0.000000 0.000000])
	// FFT([-0.135335 -0.800737 0.000000 0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([-0.135335 0.000000 0.800737 0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.000000 0.800737 0.800737 0.270671 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.135335 0.800737 1.601475 0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.135335 1.601475 0.800737 0.000000 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.270671 0.800737 0.000000 -0.135335 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.135335 0.000000 -0.800737 -0.270671 0.000000 0.000000 0.000000 0.000000])
	// FFT([0.000000 -0.800737 -1.601475 -0.135335 0.000000 0.000000 0.000000 0.000000])
}