1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file.
package floats
import (
"errors"
"math"
"slices"
"sort"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/internal/asm/f64"
)
const (
zeroLength = "floats: zero length slice"
shortSpan = "floats: slice length less than 2"
badLength = "floats: slice lengths do not match"
badDstLength = "floats: destination slice length does not match input"
)
// Add adds, element-wise, the elements of s and dst, and stores the result in dst.
// It panics if the argument lengths do not match.
func Add(dst, s []float64) {
if len(dst) != len(s) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, 1, s, dst)
}
// AddTo adds, element-wise, the elements of s and t and
// stores the result in dst.
// It panics if the argument lengths do not match.
func AddTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, 1, s, t)
return dst
}
// AddConst adds the scalar c to all of the values in dst.
func AddConst(c float64, dst []float64) {
f64.AddConst(c, dst)
}
// AddScaled performs dst = dst + alpha * s.
// It panics if the slice argument lengths do not match.
func AddScaled(dst []float64, alpha float64, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
f64.AxpyUnitaryTo(dst, alpha, s, dst)
}
// AddScaledTo performs dst = y + alpha * s, where alpha is a scalar,
// and dst, y and s are all slices.
// It panics if the slice argument lengths do not match.
//
// At the return of the function, dst[i] = y[i] + alpha * s[i]
func AddScaledTo(dst, y []float64, alpha float64, s []float64) []float64 {
if len(s) != len(y) {
panic(badLength)
}
if len(dst) != len(y) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, alpha, s, y)
return dst
}
// argsort is a helper that implements sort.Interface, as used by
// Argsort and ArgsortStable.
type argsort struct {
s []float64
inds []int
}
func (a argsort) Len() int {
return len(a.s)
}
func (a argsort) Less(i, j int) bool {
return a.s[i] < a.s[j]
}
func (a argsort) Swap(i, j int) {
a.s[i], a.s[j] = a.s[j], a.s[i]
a.inds[i], a.inds[j] = a.inds[j], a.inds[i]
}
// Argsort sorts the elements of dst while tracking their original order.
// At the conclusion of Argsort, dst will contain the original elements of dst
// but sorted in increasing order, and inds will contain the original position
// of the elements in the slice such that dst[i] = origDst[inds[i]].
// It panics if the argument lengths do not match.
func Argsort(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic(badDstLength)
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Sort(a)
}
// ArgsortStable sorts the elements of dst while tracking their original order and
// keeping the original order of equal elements. At the conclusion of ArgsortStable,
// dst will contain the original elements of dst but sorted in increasing order,
// and inds will contain the original position of the elements in the slice such
// that dst[i] = origDst[inds[i]].
// It panics if the argument lengths do not match.
func ArgsortStable(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic(badDstLength)
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Stable(a)
}
// Count applies the function f to every element of s and returns the number
// of times the function returned true.
func Count(f func(float64) bool, s []float64) int {
var n int
for _, val := range s {
if f(val) {
n++
}
}
return n
}
// CumProd finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination dst.
// It panics if the argument lengths do not match.
//
// At the return of the function, dst[i] = s[i] * s[i-1] * s[i-2] * ...
func CumProd(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic(badDstLength)
}
if len(dst) == 0 {
return dst
}
return f64.CumProd(dst, s)
}
// CumSum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination dst.
// It panics if the argument lengths do not match.
//
// At the return of the function, dst[i] = s[i] + s[i-1] + s[i-2] + ...
func CumSum(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic(badDstLength)
}
if len(dst) == 0 {
return dst
}
return f64.CumSum(dst, s)
}
// Distance computes the L-norm of s - t. See Norm for special cases.
// It panics if the slice argument lengths do not match.
func Distance(s, t []float64, L float64) float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(s) == 0 {
return 0
}
if L == 2 {
return f64.L2DistanceUnitary(s, t)
}
var norm float64
if L == 1 {
for i, v := range s {
norm += math.Abs(t[i] - v)
}
return norm
}
if math.IsInf(L, 1) {
for i, v := range s {
absDiff := math.Abs(t[i] - v)
if absDiff > norm {
norm = absDiff
}
}
return norm
}
for i, v := range s {
norm += math.Pow(math.Abs(t[i]-v), L)
}
return math.Pow(norm, 1/L)
}
// Div performs element-wise division dst / s
// and stores the value in dst.
// It panics if the argument lengths do not match.
func Div(dst, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
f64.Div(dst, s)
}
// DivTo performs element-wise division s / t
// and stores the value in dst.
// It panics if the argument lengths do not match.
func DivTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
return f64.DivTo(dst, s, t)
}
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[i]*s2[i].
// It panics if the argument lengths do not match.
func Dot(s1, s2 []float64) float64 {
if len(s1) != len(s2) {
panic(badLength)
}
return f64.DotUnitary(s1, s2)
}
// Equal returns true when the slices have equal lengths and
// all elements are numerically identical.
func Equal(s1, s2 []float64) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if s2[i] != val {
return false
}
}
return true
}
// EqualApprox returns true when the slices have equal lengths and
// all element pairs have an absolute tolerance less than tol or a
// relative tolerance less than tol.
func EqualApprox(s1, s2 []float64, tol float64) bool {
if len(s1) != len(s2) {
return false
}
for i, a := range s1 {
if !scalar.EqualWithinAbsOrRel(a, s2[i], tol, tol) {
return false
}
}
return true
}
// EqualFunc returns true when the slices have the same lengths
// and the function returns true for all element pairs.
func EqualFunc(s1, s2 []float64, f func(float64, float64) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if !f(val, s2[i]) {
return false
}
}
return true
}
// EqualLengths returns true when all of the slices have equal length,
// and false otherwise. It also returns true when there are no input slices.
func EqualLengths(slices ...[]float64) bool {
// This length check is needed: http://play.golang.org/p/sdty6YiLhM
if len(slices) == 0 {
return true
}
l := len(slices[0])
for i := 1; i < len(slices); i++ {
if len(slices[i]) != l {
return false
}
}
return true
}
// Find applies f to every element of s and returns the indices of the first
// k elements for which the f returns true, or all such elements
// if k < 0.
// Find will reslice inds to have 0 length, and will append
// found indices to inds.
// If k > 0 and there are fewer than k elements in s satisfying f,
// all of the found elements will be returned along with an error.
// At the return of the function, the input inds will be in an undetermined state.
func Find(inds []int, f func(float64) bool, s []float64, k int) ([]int, error) {
// inds is also returned to allow for calling with nil.
// Reslice inds to have zero length.
inds = inds[:0]
// If zero elements requested, can just return.
if k == 0 {
return inds, nil
}
// If k < 0, return all of the found indices.
if k < 0 {
for i, val := range s {
if f(val) {
inds = append(inds, i)
}
}
return inds, nil
}
// Otherwise, find the first k elements.
nFound := 0
for i, val := range s {
if f(val) {
inds = append(inds, i)
nFound++
if nFound == k {
return inds, nil
}
}
}
// Finished iterating over the loop, which means k elements were not found.
return inds, errors.New("floats: insufficient elements found")
}
// HasNaN returns true when the slice s has any values that are NaN and false
// otherwise.
func HasNaN(s []float64) bool {
for _, v := range s {
if math.IsNaN(v) {
return true
}
}
return false
}
// LogSpan returns a set of n equally spaced points in log space between,
// l and u where N is equal to len(dst). The first element of the
// resulting dst will be l and the final element of dst will be u.
// It panics if the length of dst is less than 2.
// Note that this call will return NaNs if either l or u are negative, and
// will return all zeros if l or u is zero.
// Also returns the mutated slice dst, so that it can be used in range, like:
//
// for i, x := range LogSpan(dst, l, u) { ... }
func LogSpan(dst []float64, l, u float64) []float64 {
Span(dst, math.Log(l), math.Log(u))
for i := range dst {
dst[i] = math.Exp(dst[i])
}
return dst
}
// LogSumExp returns the log of the sum of the exponentials of the values in s.
// Panics if s is an empty slice.
func LogSumExp(s []float64) float64 {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
// First, find the maximum value in the slice.
maxval := Max(s)
if math.IsInf(maxval, 0) {
// If it's infinity either way, the logsumexp will be infinity as well
// returning now avoids NaNs
return maxval
}
var lse float64
// Compute the sumexp part
for _, val := range s {
lse += math.Exp(val - maxval)
}
// Take the log and add back on the constant taken out
return math.Log(lse) + maxval
}
// Max returns the maximum value in the input slice. If the slice is empty, Max will panic.
func Max(s []float64) float64 {
return s[MaxIdx(s)]
}
// MaxIdx returns the index of the maximum value in the input slice. If several
// entries have the maximum value, the first such index is returned.
// It panics if s is zero length.
func MaxIdx(s []float64) int {
if len(s) == 0 {
panic(zeroLength)
}
max := math.NaN()
var ind int
for i, v := range s {
if math.IsNaN(v) {
continue
}
if v > max || math.IsNaN(max) {
max = v
ind = i
}
}
return ind
}
// Min returns the minimum value in the input slice.
// It panics if s is zero length.
func Min(s []float64) float64 {
return s[MinIdx(s)]
}
// MinIdx returns the index of the minimum value in the input slice. If several
// entries have the minimum value, the first such index is returned.
// It panics if s is zero length.
func MinIdx(s []float64) int {
if len(s) == 0 {
panic(zeroLength)
}
min := math.NaN()
var ind int
for i, v := range s {
if math.IsNaN(v) {
continue
}
if v < min || math.IsNaN(min) {
min = v
ind = i
}
}
return ind
}
// Mul performs element-wise multiplication between dst
// and s and stores the value in dst.
// It panics if the argument lengths do not match.
func Mul(dst, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
for i, val := range s {
dst[i] *= val
}
}
// MulTo performs element-wise multiplication between s
// and t and stores the value in dst.
// It panics if the argument lengths do not match.
func MulTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
for i, val := range t {
dst[i] = val * s[i]
}
return dst
}
// NearestIdx returns the index of the element in s
// whose value is nearest to v. If several such
// elements exist, the lowest index is returned.
// It panics if s is zero length.
func NearestIdx(s []float64, v float64) int {
if len(s) == 0 {
panic(zeroLength)
}
switch {
case math.IsNaN(v):
return 0
case math.IsInf(v, 1):
return MaxIdx(s)
case math.IsInf(v, -1):
return MinIdx(s)
}
var ind int
dist := math.NaN()
for i, val := range s {
newDist := math.Abs(v - val)
// A NaN distance will not be closer.
if math.IsNaN(newDist) {
continue
}
if newDist < dist || math.IsNaN(dist) {
dist = newDist
ind = i
}
}
return ind
}
// NearestIdxForSpan return the index of a hypothetical vector created
// by Span with length n and bounds l and u whose value is closest
// to v. That is, NearestIdxForSpan(n, l, u, v) is equivalent to
// Nearest(Span(make([]float64, n),l,u),v) without an allocation.
// It panics if n is less than two.
func NearestIdxForSpan(n int, l, u float64, v float64) int {
if n < 2 {
panic(shortSpan)
}
if math.IsNaN(v) {
return 0
}
// Special cases for Inf and NaN.
switch {
case math.IsNaN(l) && !math.IsNaN(u):
return n - 1
case math.IsNaN(u):
return 0
case math.IsInf(l, 0) && math.IsInf(u, 0):
if l == u {
return 0
}
if n%2 == 1 {
if !math.IsInf(v, 0) {
return n / 2
}
if math.Copysign(1, v) == math.Copysign(1, l) {
return 0
}
return n/2 + 1
}
if math.Copysign(1, v) == math.Copysign(1, l) {
return 0
}
return n / 2
case math.IsInf(l, 0):
if v == l {
return 0
}
return n - 1
case math.IsInf(u, 0):
if v == u {
return n - 1
}
return 0
case math.IsInf(v, -1):
if l <= u {
return 0
}
return n - 1
case math.IsInf(v, 1):
if u <= l {
return 0
}
return n - 1
}
// Special cases for v outside (l, u) and (u, l).
switch {
case l < u:
if v <= l {
return 0
}
if v >= u {
return n - 1
}
case l > u:
if v >= l {
return 0
}
if v <= u {
return n - 1
}
default:
return 0
}
// Can't guarantee anything about exactly halfway between
// because of floating point weirdness.
return int((float64(n)-1)/(u-l)*(v-l) + 0.5)
}
// Norm returns the L norm of the slice S, defined as
// (sum_{i=1}^N s[i]^L)^{1/L}
// Special cases:
// L = math.Inf(1) gives the maximum absolute value.
// Does not correctly compute the zero norm (use Count).
func Norm(s []float64, L float64) float64 {
// Should this complain if L is not positive?
// Should this be done in log space for better numerical stability?
// would be more cost
// maybe only if L is high?
if len(s) == 0 {
return 0
}
if L == 2 {
return f64.L2NormUnitary(s)
}
var norm float64
if L == 1 {
for _, val := range s {
norm += math.Abs(val)
}
return norm
}
if math.IsInf(L, 1) {
for _, val := range s {
norm = math.Max(norm, math.Abs(val))
}
return norm
}
for _, val := range s {
norm += math.Pow(math.Abs(val), L)
}
return math.Pow(norm, 1/L)
}
// Prod returns the product of the elements of the slice.
// Returns 1 if len(s) = 0.
func Prod(s []float64) float64 {
prod := 1.0
for _, val := range s {
prod *= val
}
return prod
}
// Reverse reverses the order of elements in the slice.
//
// Deprecated: This function simply calls [slices.Reverse].
func Reverse(s []float64) {
slices.Reverse(s)
}
// Same returns true when the input slices have the same length and all
// elements have the same value with NaN treated as the same.
func Same(s, t []float64) bool {
if len(s) != len(t) {
return false
}
for i, v := range s {
w := t[i]
if v != w && !(math.IsNaN(v) && math.IsNaN(w)) {
return false
}
}
return true
}
// Scale multiplies every element in dst by the scalar c.
func Scale(c float64, dst []float64) {
if len(dst) > 0 {
f64.ScalUnitary(c, dst)
}
}
// ScaleTo multiplies the elements in s by c and stores the result in dst.
// It panics if the slice argument lengths do not match.
func ScaleTo(dst []float64, c float64, s []float64) []float64 {
if len(dst) != len(s) {
panic(badDstLength)
}
if len(dst) > 0 {
f64.ScalUnitaryTo(dst, c, s)
}
return dst
}
// Span returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u.
// It panics if the length of dst is less than 2.
//
// Span also returns the mutated slice dst, so that it can be used in range expressions,
// like:
//
// for i, x := range Span(dst, l, u) { ... }
func Span(dst []float64, l, u float64) []float64 {
n := len(dst)
if n < 2 {
panic(shortSpan)
}
// Special cases for Inf and NaN.
switch {
case math.IsNaN(l):
for i := range dst[:len(dst)-1] {
dst[i] = math.NaN()
}
dst[len(dst)-1] = u
return dst
case math.IsNaN(u):
for i := range dst[1:] {
dst[i+1] = math.NaN()
}
dst[0] = l
return dst
case math.IsInf(l, 0) && math.IsInf(u, 0):
for i := range dst[:len(dst)/2] {
dst[i] = l
dst[len(dst)-i-1] = u
}
if len(dst)%2 == 1 {
if l != u {
dst[len(dst)/2] = 0
} else {
dst[len(dst)/2] = l
}
}
return dst
case math.IsInf(l, 0):
for i := range dst[:len(dst)-1] {
dst[i] = l
}
dst[len(dst)-1] = u
return dst
case math.IsInf(u, 0):
for i := range dst[1:] {
dst[i+1] = u
}
dst[0] = l
return dst
}
step := (u - l) / float64(n-1)
for i := range dst {
dst[i] = l + step*float64(i)
}
return dst
}
// Sub subtracts, element-wise, the elements of s from dst.
// It panics if the argument lengths do not match.
func Sub(dst, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
f64.AxpyUnitaryTo(dst, -1, s, dst)
}
// SubTo subtracts, element-wise, the elements of t from s and
// stores the result in dst.
// It panics if the argument lengths do not match.
func SubTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, -1, t, s)
return dst
}
// Sum returns the sum of the elements of the slice.
func Sum(s []float64) float64 {
return f64.Sum(s)
}
// Within returns the first index i where s[i] <= v < s[i+1]. Within panics if:
// - len(s) < 2
// - s is not sorted
func Within(s []float64, v float64) int {
if len(s) < 2 {
panic(shortSpan)
}
if !sort.Float64sAreSorted(s) {
panic("floats: input slice not sorted")
}
if v < s[0] || v >= s[len(s)-1] || math.IsNaN(v) {
return -1
}
for i, f := range s[1:] {
if v < f {
return i
}
}
return -1
}
// SumCompensated returns the sum of the elements of the slice calculated with greater
// accuracy than Sum at the expense of additional computation.
func SumCompensated(s []float64) float64 {
// SumCompensated uses an improved version of Kahan's compensated
// summation algorithm proposed by Neumaier.
// See https://en.wikipedia.org/wiki/Kahan_summation_algorithm for details.
var sum, c float64
for _, x := range s {
// This type conversion is here to prevent a sufficiently smart compiler
// from optimising away these operations.
t := float64(sum + x)
if math.Abs(sum) >= math.Abs(x) {
c += (sum - t) + x
} else {
c += (x - t) + sum
}
sum = t
}
return sum + c
}
|