1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file.
package scalar
import (
"math"
"strconv"
)
// EqualWithinAbs returns true when a and b have an absolute difference
// not greater than tol.
func EqualWithinAbs(a, b, tol float64) bool {
return a == b || math.Abs(a-b) <= tol
}
// minNormalFloat64 is the smallest normal number. For 64 bit IEEE-754
// floats this is 2^{-1022}.
const minNormalFloat64 = 0x1p-1022
// EqualWithinRel returns true when the difference between a and b
// is not greater than tol times the greater absolute value of a and b,
//
// abs(a-b) <= tol * max(abs(a), abs(b)).
func EqualWithinRel(a, b, tol float64) bool {
if a == b {
return true
}
delta := math.Abs(a - b)
if delta <= minNormalFloat64 {
return delta <= tol*minNormalFloat64
}
// We depend on the division in this relationship to identify
// infinities (we rely on the NaN to fail the test) otherwise
// we compare Infs of the same sign and evaluate Infs as equal
// independent of sign.
return delta/math.Max(math.Abs(a), math.Abs(b)) <= tol
}
// EqualWithinAbsOrRel returns true when a and b are equal to within
// the absolute or relative tolerances. See EqualWithinAbs and
// EqualWithinRel for details.
func EqualWithinAbsOrRel(a, b, absTol, relTol float64) bool {
return EqualWithinAbs(a, b, absTol) || EqualWithinRel(a, b, relTol)
}
// EqualWithinULP returns true when a and b are equal to within
// the specified number of floating point units in the last place.
func EqualWithinULP(a, b float64, ulp uint) bool {
if a == b {
return true
}
if math.IsNaN(a) || math.IsNaN(b) {
return false
}
if math.Signbit(a) != math.Signbit(b) {
return math.Float64bits(math.Abs(a))+math.Float64bits(math.Abs(b)) <= uint64(ulp)
}
return ulpDiff(math.Float64bits(a), math.Float64bits(b)) <= uint64(ulp)
}
func ulpDiff(a, b uint64) uint64 {
if a > b {
return a - b
}
return b - a
}
const (
nanBits = 0x7ff8000000000000
nanMask = 0xfff8000000000000
)
// NaNWith returns an IEEE 754 "quiet not-a-number" value with the
// payload specified in the low 51 bits of payload.
// The NaN returned by math.NaN has a bit pattern equal to NaNWith(1).
func NaNWith(payload uint64) float64 {
return math.Float64frombits(nanBits | (payload &^ nanMask))
}
// NaNPayload returns the lowest 51 bits payload of an IEEE 754 "quiet
// not-a-number". For values of f other than quiet-NaN, NaNPayload
// returns zero and false.
func NaNPayload(f float64) (payload uint64, ok bool) {
b := math.Float64bits(f)
if b&nanBits != nanBits {
return 0, false
}
return b &^ nanMask, true
}
// ParseWithNA converts the string s to a float64 in value.
// If s equals missing, weight is returned as 0, otherwise 1.
func ParseWithNA(s, missing string) (value, weight float64, err error) {
if s == missing {
return 0, 0, nil
}
value, err = strconv.ParseFloat(s, 64)
if err == nil {
weight = 1
}
return value, weight, err
}
// Round returns the half away from zero rounded value of x with prec precision.
//
// Special cases are:
//
// Round(±0) = +0
// Round(±Inf) = ±Inf
// Round(NaN) = NaN
func Round(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
x = math.Round(intermed)
if x == 0 {
return 0
}
return x / pow
}
// RoundEven returns the half even rounded value of x with prec precision.
//
// Special cases are:
//
// RoundEven(±0) = +0
// RoundEven(±Inf) = ±Inf
// RoundEven(NaN) = NaN
func RoundEven(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
x = math.RoundToEven(intermed)
if x == 0 {
return 0
}
return x / pow
}
// Same returns true when the inputs have the same value, allowing NaN equality.
func Same(a, b float64) bool {
return a == b || (math.IsNaN(a) && math.IsNaN(b))
}
|