1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package digraph6 implements graphs specified by digraph6 strings.
package digraph6 // import "gonum.org/v1/gonum/graph/encoding/digraph6"
import (
"fmt"
"math/big"
"strings"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/iterator"
"gonum.org/v1/gonum/graph/simple"
"gonum.org/v1/gonum/internal/order"
)
// Graph is a digraph6-represented directed graph.
//
// See https://users.cecs.anu.edu.au/~bdm/data/formats.txt for details.
//
// Note that the digraph6 format specifies that the first character of the graph
// string is a '&'. This character must be present for use in the digraph6 package.
// A Graph without this prefix is treated as the null graph.
type Graph string
var (
d6 Graph
_ graph.Graph = d6
_ graph.Directed = d6
)
// Encode returns a graph6 encoding of the topology of the given graph using a
// lexical ordering of the nodes by ID to map them to [0, n).
func Encode(g graph.Graph) Graph {
nodes := graph.NodesOf(g.Nodes())
n := len(nodes)
order.ByID(nodes)
indexOf := make(map[int64]int, n)
for i, n := range nodes {
indexOf[n.ID()] = i
}
size := n * n
var b big.Int
for i, u := range nodes {
it := g.From(u.ID())
for it.Next() {
vid := it.Node().ID()
j := indexOf[vid]
b.SetBit(&b, bitFor(int64(i), int64(j), int64(n)), 1)
}
}
var buf strings.Builder
buf.WriteByte('&')
// digraph6 specifies graphs of order up to 2^36-1 which
// overflows int on 32-bit architectures. We know that on
// those machines n will not be this large, since it came
// from a length, but explicitly convert to 64 bits to
// allow the package to build on those architectures.
//
// See the section Small nonnegative integers in the spec
// for details of this section.
switch n := int64(n); {
case n < 63:
buf.WriteByte(byte(n) + 63)
case n < 258048:
buf.Write([]byte{126, bit6(n>>12) + 63, bit6(n>>6) + 63, bit6(n) + 63})
case n < 68719476736:
buf.Write([]byte{126, 126, bit6(n>>30) + 63, bit6(n>>24) + 63, bit6(n>>18) + 63, bit6(n>>12) + 63, bit6(n>>6) + 63, bit6(n) + 63})
default:
panic("digraph6: too large")
}
var c byte
for i := 0; i < size; i++ {
bit := i % 6
c |= byte(b.Bit(i)) << uint(5-bit)
if bit == 5 {
buf.WriteByte(c + 63)
c = 0
}
}
if size%6 != 0 {
buf.WriteByte(c + 63)
}
return Graph(buf.String())
}
// bit6 returns only the lower 6 bits of b.
func bit6(b int64) byte {
return byte(b) & 0x3f
}
// IsValid returns whether the graph is a valid digraph6 encoding. An invalid Graph
// behaves as the null graph.
func IsValid(g Graph) bool {
n := int(numberOf(g))
if n < 0 {
return false
}
size := (n*n + 5) / 6 // ceil(n^2 / 6)
g = g[1:]
switch {
case g[0] != 126:
return len(g[1:]) == size
case g[1] != 126:
return len(g[4:]) == size
default:
return len(g[8:]) == size
}
}
// Edge returns the edge from u to v, with IDs uid and vid, if such an edge
// exists and nil otherwise. The node v must be directly reachable from u as
// defined by the From method.
func (g Graph) Edge(uid, vid int64) graph.Edge {
if !IsValid(g) {
return nil
}
if !g.HasEdgeFromTo(uid, vid) {
return nil
}
return simple.Edge{F: simple.Node(uid), T: simple.Node(vid)}
}
// From returns all nodes that can be reached directly from the node with the
// given ID.
func (g Graph) From(id int64) graph.Nodes {
if !IsValid(g) {
return graph.Empty
}
if g.Node(id) == nil {
return nil
}
return &d6ForwardIterator{g: g, from: id, to: -1}
}
// HasEdgeBetween returns whether an edge exists between nodes with IDs xid
// and yid without considering direction.
func (g Graph) HasEdgeBetween(xid, yid int64) bool {
if !IsValid(g) {
return false
}
return g.HasEdgeFromTo(xid, yid) || g.HasEdgeFromTo(yid, xid)
}
// HasEdgeFromTo returns whether an edge exists in the graph from u to v with
// IDs uid and vid.
func (g Graph) HasEdgeFromTo(uid, vid int64) bool {
if !IsValid(g) {
return false
}
if uid == vid {
return false
}
n := numberOf(g)
if uid < 0 || n <= uid {
return false
}
if vid < 0 || n <= vid {
return false
}
return isSet(bitFor(uid, vid, n), g)
}
// Node returns the node with the given ID if it exists in the graph, and nil
// otherwise.
func (g Graph) Node(id int64) graph.Node {
if !IsValid(g) {
return nil
}
if id < 0 || numberOf(g) <= id {
return nil
}
return simple.Node(id)
}
// Nodes returns all the nodes in the graph.
func (g Graph) Nodes() graph.Nodes {
if !IsValid(g) {
return graph.Empty
}
return iterator.NewImplicitNodes(0, int(numberOf(g)), func(id int) graph.Node { return simple.Node(id) })
}
// To returns all nodes that can reach directly to the node with the given ID.
func (g Graph) To(id int64) graph.Nodes {
if !IsValid(g) || g.Node(id) == nil {
return graph.Empty
}
return &d6ReverseIterator{g: g, from: -1, to: id}
}
// d6ForwardIterator is a graph.Nodes for digraph6 graph edges for forward hops.
type d6ForwardIterator struct {
g Graph
from int64
to int64
}
var _ graph.Nodes = (*d6ForwardIterator)(nil)
func (i *d6ForwardIterator) Next() bool {
n := numberOf(i.g)
for i.to < n-1 {
i.to++
if i.to != i.from && isSet(bitFor(i.from, i.to, n), i.g) {
return true
}
}
return false
}
func (i *d6ForwardIterator) Len() int {
var cnt int
n := numberOf(i.g)
for to := i.to; to < n-1; {
to++
if to != i.from && isSet(bitFor(i.from, to, n), i.g) {
cnt++
}
}
return cnt
}
func (i *d6ForwardIterator) Reset() { i.to = -1 }
func (i *d6ForwardIterator) Node() graph.Node { return simple.Node(i.to) }
// d6ReverseIterator is a graph.Nodes for digraph6 graph edges for reverse hops.
type d6ReverseIterator struct {
g Graph
from int64
to int64
}
var _ graph.Nodes = (*d6ReverseIterator)(nil)
func (i *d6ReverseIterator) Next() bool {
n := numberOf(i.g)
for i.from < n-1 {
i.from++
if i.to != i.from && isSet(bitFor(i.from, i.to, n), i.g) {
return true
}
}
return false
}
func (i *d6ReverseIterator) Len() int {
var cnt int
n := numberOf(i.g)
for from := i.from; from < n-1; {
from++
if from != i.to && isSet(bitFor(from, i.to, n), i.g) {
cnt++
}
}
return cnt
}
func (i *d6ReverseIterator) Reset() { i.from = -1 }
func (i *d6ReverseIterator) Node() graph.Node { return simple.Node(i.from) }
// numberOf returns the digraph6-encoded number corresponding to g.
func numberOf(g Graph) int64 {
if len(g) < 2 {
return -1
}
if g[0] != '&' {
return -1
}
g = g[1:]
for _, b := range []byte(g) {
if b < 63 || 126 < b {
return -1
}
}
if g[0] != 126 {
return int64(g[0] - 63)
}
if len(g) < 4 {
return -1
}
if g[1] != 126 {
return int64(g[1]-63)<<12 | int64(g[2]-63)<<6 | int64(g[3]-63)
}
if len(g) < 8 {
return -1
}
return int64(g[2]-63)<<30 | int64(g[3]-63)<<24 | int64(g[4]-63)<<18 | int64(g[5]-63)<<12 | int64(g[6]-63)<<6 | int64(g[7]-63)
}
// bitFor returns the index into the digraph6 adjacency matrix for uid->vid in a graph
// order n.
func bitFor(uid, vid, n int64) int {
return int(uid*n + vid)
}
// isSet returns whether the given bit of the adjacency matrix is set.
func isSet(bit int, g Graph) bool {
g = g[1:]
switch {
case g[0] != 126:
g = g[1:]
case g[1] != 126:
g = g[4:]
default:
g = g[8:]
}
if bit/6 >= len(g) {
panic("digraph6: index out of range")
}
return (g[bit/6]-63)&(1<<uint(5-bit%6)) != 0
}
func (g Graph) GoString() string {
if !IsValid(g) {
return ""
}
bin, m6 := binary(g)
format := fmt.Sprintf("%%d:%%0%db", m6)
return fmt.Sprintf(format, numberOf(g), bin)
}
func binary(g Graph) (b *big.Int, l int) {
n := int(numberOf(g))
g = g[1:]
switch {
case g[0] != 126:
g = g[1:]
case g[1] != 126:
g = g[4:]
default:
g = g[8:]
}
b = &big.Int{}
var c big.Int
for i := range g {
c.SetUint64(uint64(g[len(g)-i-1] - 63))
c.Lsh(&c, uint(6*i))
b.Or(b, &c)
}
// Truncate to only the relevant parts of the bit vector.
b.Rsh(b, uint(len(g)*6-(n*n)))
return b, n * n
}
|