1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dot
import (
"bytes"
"errors"
"fmt"
"regexp"
"strconv"
"strings"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/encoding"
"gonum.org/v1/gonum/internal/order"
)
// Node is a DOT graph node.
type Node interface {
// DOTID returns a DOT node ID.
//
// An ID is one of the following:
//
// - a string of alphabetic ([a-zA-Z\x80-\xff]) characters, underscores ('_').
// digits ([0-9]), not beginning with a digit.
// - a numeral [-]?(.[0-9]+ | [0-9]+(.[0-9]*)?).
// - a double-quoted string ("...") possibly containing escaped quotes (\").
// - an HTML string (<...>).
DOTID() string
}
// Attributers are graph.Graph values that specify top-level DOT
// attributes.
type Attributers interface {
DOTAttributers() (graph, node, edge encoding.Attributer)
}
// Porter defines the behavior of graph.Edge values that can specify
// connection ports for their end points. The returned port corresponds
// to the DOT node port to be used by the edge, compass corresponds
// to DOT compass point to which the edge will be aimed.
type Porter interface {
// FromPort returns the port and compass for
// the From node of a graph.Edge.
FromPort() (port, compass string)
// ToPort returns the port and compass for
// the To node of a graph.Edge.
ToPort() (port, compass string)
}
// Structurer represents a graph.Graph that can define subgraphs.
type Structurer interface {
Structure() []Graph
}
// MultiStructurer represents a graph.Multigraph that can define subgraphs.
type MultiStructurer interface {
Structure() []Multigraph
}
// Graph wraps named graph.Graph values.
type Graph interface {
graph.Graph
DOTID() string
}
// Multigraph wraps named graph.Multigraph values.
type Multigraph interface {
graph.Multigraph
DOTID() string
}
// Subgrapher wraps graph.Node values that represent subgraphs.
type Subgrapher interface {
Subgraph() graph.Graph
}
// MultiSubgrapher wraps graph.Node values that represent subgraphs.
type MultiSubgrapher interface {
Subgraph() graph.Multigraph
}
// Marshal returns the DOT encoding for the graph g, applying the prefix and
// indent to the encoding. Name is used to specify the graph name. If name is
// empty and g implements Graph, the returned string from DOTID will be used.
//
// Graph serialization will work for a graph.Graph without modification,
// however, advanced GraphViz DOT features provided by Marshal depend on
// implementation of the Node, Attributer, Porter, Attributers, Structurer,
// Subgrapher and Graph interfaces.
//
// Attributes and IDs are quoted if needed during marshalling.
func Marshal(g graph.Graph, name, prefix, indent string) ([]byte, error) {
var p simpleGraphPrinter
p.indent = indent
p.prefix = prefix
p.visited = make(map[edge]bool)
err := p.print(g, name, false, false)
if err != nil {
return nil, err
}
return p.buf.Bytes(), nil
}
// MarshalMulti returns the DOT encoding for the multigraph g, applying the
// prefix and indent to the encoding. Name is used to specify the graph name. If
// name is empty and g implements Graph, the returned string from DOTID will be
// used.
//
// Graph serialization will work for a graph.Multigraph without modification,
// however, advanced GraphViz DOT features provided by Marshal depend on
// implementation of the Node, Attributer, Porter, Attributers, Structurer,
// MultiSubgrapher and Multigraph interfaces.
//
// Attributes and IDs are quoted if needed during marshalling.
func MarshalMulti(g graph.Multigraph, name, prefix, indent string) ([]byte, error) {
var p multiGraphPrinter
p.indent = indent
p.prefix = prefix
p.visited = make(map[line]bool)
err := p.print(g, name, false, false)
if err != nil {
return nil, err
}
return p.buf.Bytes(), nil
}
type printer struct {
buf bytes.Buffer
prefix string
indent string
depth int
}
type edge struct {
inGraph string
from, to int64
}
func (p *simpleGraphPrinter) print(g graph.Graph, name string, needsIndent, isSubgraph bool) error {
if name == "" {
if g, ok := g.(Graph); ok {
name = g.DOTID()
}
}
_, isDirected := g.(graph.Directed)
p.printFrontMatter(name, needsIndent, isSubgraph, isDirected, true)
if a, ok := g.(Attributers); ok {
p.writeAttributeComplex(a)
}
if s, ok := g.(Structurer); ok {
for _, g := range s.Structure() {
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
p.buf.WriteByte('\n')
p.print(g, g.DOTID(), true, true)
}
}
nodes := graph.NodesOf(g.Nodes())
order.ByID(nodes)
havePrintedNodeHeader := false
for _, n := range nodes {
if s, ok := n.(Subgrapher); ok {
// If the node is not linked to any other node
// the graph needs to be written now.
if g.From(n.ID()).Len() == 0 {
g := s.Subgraph()
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
if !havePrintedNodeHeader {
p.newline()
p.buf.WriteString("// Node definitions.")
havePrintedNodeHeader = true
}
p.newline()
p.print(g, graphID(g, n), false, true)
}
continue
}
if !havePrintedNodeHeader {
p.newline()
p.buf.WriteString("// Node definitions.")
havePrintedNodeHeader = true
}
p.newline()
p.writeNode(n)
if a, ok := n.(encoding.Attributer); ok {
p.writeAttributeList(a)
}
p.buf.WriteByte(';')
}
havePrintedEdgeHeader := false
for _, n := range nodes {
nid := n.ID()
to := graph.NodesOf(g.From(nid))
order.ByID(to)
for _, t := range to {
tid := t.ID()
f := edge{inGraph: name, from: nid, to: tid}
if isDirected {
if p.visited[f] {
continue
}
p.visited[f] = true
} else {
if p.visited[f] {
continue
}
p.visited[f] = true
p.visited[edge{inGraph: name, from: tid, to: nid}] = true
}
if !havePrintedEdgeHeader {
p.buf.WriteByte('\n')
p.buf.WriteString(strings.TrimRight(p.prefix, " \t\n")) // Trim whitespace suffix.
p.newline()
p.buf.WriteString("// Edge definitions.")
havePrintedEdgeHeader = true
}
p.newline()
if s, ok := n.(Subgrapher); ok {
g := s.Subgraph()
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
p.print(g, graphID(g, n), false, true)
} else {
p.writeNode(n)
}
e := g.Edge(nid, tid)
porter, edgeIsPorter := e.(Porter)
if edgeIsPorter {
if e.From().ID() == nid {
p.writePorts(porter.FromPort())
} else {
p.writePorts(porter.ToPort())
}
}
if isDirected {
p.buf.WriteString(" -> ")
} else {
p.buf.WriteString(" -- ")
}
if s, ok := t.(Subgrapher); ok {
g := s.Subgraph()
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
p.print(g, graphID(g, t), false, true)
} else {
p.writeNode(t)
}
if edgeIsPorter {
if e.From().ID() == nid {
p.writePorts(porter.ToPort())
} else {
p.writePorts(porter.FromPort())
}
}
if a, ok := g.Edge(nid, tid).(encoding.Attributer); ok {
p.writeAttributeList(a)
}
p.buf.WriteByte(';')
}
}
p.closeBlock("}")
return nil
}
func (p *printer) printFrontMatter(name string, needsIndent, isSubgraph, isDirected, isStrict bool) {
p.buf.WriteString(p.prefix)
if needsIndent {
for i := 0; i < p.depth; i++ {
p.buf.WriteString(p.indent)
}
}
if !isSubgraph && isStrict {
p.buf.WriteString("strict ")
}
if isSubgraph {
p.buf.WriteString("sub")
} else if isDirected {
p.buf.WriteString("di")
}
p.buf.WriteString("graph")
if name != "" {
p.buf.WriteByte(' ')
p.buf.WriteString(quoteID(name))
}
p.openBlock(" {")
}
func (p *printer) writeNode(n graph.Node) {
p.buf.WriteString(quoteID(nodeID(n)))
}
func (p *printer) writePorts(port, cp string) {
if port != "" {
p.buf.WriteByte(':')
p.buf.WriteString(quoteID(port))
}
if cp != "" {
p.buf.WriteByte(':')
p.buf.WriteString(cp)
}
}
func nodeID(n graph.Node) string {
switch n := n.(type) {
case Node:
return n.DOTID()
default:
return fmt.Sprint(n.ID())
}
}
func graphID(g interface{}, n graph.Node) string {
switch g := g.(type) {
case Node:
return g.DOTID()
default:
return nodeID(n)
}
}
func (p *printer) writeAttributeList(a encoding.Attributer) {
attributes := a.Attributes()
switch len(attributes) {
case 0:
case 1:
p.buf.WriteString(" [")
p.buf.WriteString(quoteID(attributes[0].Key))
p.buf.WriteByte('=')
p.buf.WriteString(quoteID(attributes[0].Value))
p.buf.WriteString("]")
default:
p.openBlock(" [")
for _, att := range attributes {
p.newline()
p.buf.WriteString(quoteID(att.Key))
p.buf.WriteByte('=')
p.buf.WriteString(quoteID(att.Value))
}
p.closeBlock("]")
}
}
var attType = []string{"graph", "node", "edge"}
func (p *printer) writeAttributeComplex(ca Attributers) {
g, n, e := ca.DOTAttributers()
haveWrittenBlock := false
for i, a := range []encoding.Attributer{g, n, e} {
if a == nil {
continue
}
attributes := a.Attributes()
if len(attributes) == 0 {
continue
}
if haveWrittenBlock {
p.buf.WriteByte(';')
}
p.newline()
p.buf.WriteString(attType[i])
p.openBlock(" [")
for _, att := range attributes {
p.newline()
p.buf.WriteString(quoteID(att.Key))
p.buf.WriteByte('=')
p.buf.WriteString(quoteID(att.Value))
}
p.closeBlock("]")
haveWrittenBlock = true
}
if haveWrittenBlock {
p.buf.WriteString(";\n")
}
}
func (p *printer) newline() {
p.buf.WriteByte('\n')
p.buf.WriteString(p.prefix)
for i := 0; i < p.depth; i++ {
p.buf.WriteString(p.indent)
}
}
func (p *printer) openBlock(b string) {
p.buf.WriteString(b)
p.depth++
}
func (p *printer) closeBlock(b string) {
p.depth--
p.newline()
p.buf.WriteString(b)
}
type simpleGraphPrinter struct {
printer
visited map[edge]bool
}
type multiGraphPrinter struct {
printer
visited map[line]bool
}
type line struct {
inGraph string
from int64
to int64
id int64
}
func (p *multiGraphPrinter) print(g graph.Multigraph, name string, needsIndent, isSubgraph bool) error {
if name == "" {
if g, ok := g.(Multigraph); ok {
name = g.DOTID()
}
}
_, isDirected := g.(graph.Directed)
p.printFrontMatter(name, needsIndent, isSubgraph, isDirected, false)
if a, ok := g.(Attributers); ok {
p.writeAttributeComplex(a)
}
if s, ok := g.(MultiStructurer); ok {
for _, g := range s.Structure() {
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
p.buf.WriteByte('\n')
p.print(g, g.DOTID(), true, true)
}
}
nodes := graph.NodesOf(g.Nodes())
order.ByID(nodes)
havePrintedNodeHeader := false
for _, n := range nodes {
if s, ok := n.(MultiSubgrapher); ok {
// If the node is not linked to any other node
// the graph needs to be written now.
if g.From(n.ID()).Len() == 0 {
g := s.Subgraph()
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
if !havePrintedNodeHeader {
p.newline()
p.buf.WriteString("// Node definitions.")
havePrintedNodeHeader = true
}
p.newline()
p.print(g, graphID(g, n), false, true)
}
continue
}
if !havePrintedNodeHeader {
p.newline()
p.buf.WriteString("// Node definitions.")
havePrintedNodeHeader = true
}
p.newline()
p.writeNode(n)
if a, ok := n.(encoding.Attributer); ok {
p.writeAttributeList(a)
}
p.buf.WriteByte(';')
}
havePrintedEdgeHeader := false
for _, n := range nodes {
nid := n.ID()
to := graph.NodesOf(g.From(nid))
order.ByID(to)
for _, t := range to {
tid := t.ID()
lines := graph.LinesOf(g.Lines(nid, tid))
order.LinesByIDs(lines)
for _, l := range lines {
lid := l.ID()
f := line{inGraph: name, from: nid, to: tid, id: lid}
if isDirected {
if p.visited[f] {
continue
}
p.visited[f] = true
} else {
if p.visited[f] {
continue
}
p.visited[f] = true
p.visited[line{inGraph: name, from: tid, to: nid, id: lid}] = true
}
if !havePrintedEdgeHeader {
p.buf.WriteByte('\n')
p.buf.WriteString(strings.TrimRight(p.prefix, " \t\n")) // Trim whitespace suffix.
p.newline()
p.buf.WriteString("// Edge definitions.")
havePrintedEdgeHeader = true
}
p.newline()
if s, ok := n.(MultiSubgrapher); ok {
g := s.Subgraph()
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
p.print(g, graphID(g, n), false, true)
} else {
p.writeNode(n)
}
porter, edgeIsPorter := l.(Porter)
if edgeIsPorter {
if l.From().ID() == nid {
p.writePorts(porter.FromPort())
} else {
p.writePorts(porter.ToPort())
}
}
if isDirected {
p.buf.WriteString(" -> ")
} else {
p.buf.WriteString(" -- ")
}
if s, ok := t.(MultiSubgrapher); ok {
g := s.Subgraph()
_, subIsDirected := g.(graph.Directed)
if subIsDirected != isDirected {
return errors.New("dot: mismatched graph type")
}
p.print(g, graphID(g, t), false, true)
} else {
p.writeNode(t)
}
if edgeIsPorter {
if l.From().ID() == nid {
p.writePorts(porter.ToPort())
} else {
p.writePorts(porter.FromPort())
}
}
if a, ok := l.(encoding.Attributer); ok {
p.writeAttributeList(a)
}
p.buf.WriteByte(';')
}
}
}
p.closeBlock("}")
return nil
}
// quoteID quotes the given string if needed in the context of an ID. If s is
// already quoted, or if s does not contain any spaces or special characters
// that need escaping, the original string is returned.
func quoteID(s string) string {
// To use a keyword as an ID, it must be quoted.
if isKeyword(s) {
return strconv.Quote(s)
}
// Quote if s is not an ID. This includes strings containing spaces, except
// if those spaces are used within HTML string IDs (e.g. <foo >).
if !isID(s) {
return strconv.Quote(s)
}
return s
}
// isKeyword reports whether the given string is a keyword in the DOT language.
func isKeyword(s string) bool {
// ref: https://www.graphviz.org/doc/info/lang.html
keywords := []string{"node", "edge", "graph", "digraph", "subgraph", "strict"}
for _, keyword := range keywords {
if strings.EqualFold(s, keyword) {
return true
}
}
return false
}
// FIXME: see if we rewrite this in another way to remove our regexp dependency.
// Regular expression to match identifier and numeral IDs.
var (
reIdent = regexp.MustCompile(`^[a-zA-Z\200-\377_][0-9a-zA-Z\200-\377_]*$`)
reNumeral = regexp.MustCompile(`^[-]?(\.[0-9]+|[0-9]+(\.[0-9]*)?)$`)
)
// isID reports whether the given string is an ID.
//
// An ID is one of the following:
//
// 1. Any string of alphabetic ([a-zA-Z\200-\377]) characters, underscores ('_')
// or digits ([0-9]), not beginning with a digit;
// 2. a numeral [-]?(.[0-9]+ | [0-9]+(.[0-9]*)? );
// 3. any double-quoted string ("...") possibly containing escaped quotes (\");
// 4. an HTML string (<...>).
func isID(s string) bool {
// 1. an identifier.
if reIdent.MatchString(s) {
return true
}
// 2. a numeral.
if reNumeral.MatchString(s) {
return true
}
// 3. double-quote string ID.
if len(s) >= 2 && strings.HasPrefix(s, `"`) && strings.HasSuffix(s, `"`) {
// Check that escape sequences within the double-quotes are valid.
if _, err := strconv.Unquote(s); err == nil {
return true
}
}
// 4. HTML ID.
return isHTMLID(s)
}
// isHTMLID reports whether the given string an HTML ID.
func isHTMLID(s string) bool {
// HTML IDs have the format /^<.*>$/
return len(s) >= 2 && strings.HasPrefix(s, "<") && strings.HasSuffix(s, ">")
}
|