1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flow
import "gonum.org/v1/gonum/graph"
// DominatorsSLT returns a dominator tree for all nodes in the flow graph
// g starting from the given root node using the sophisticated version of
// the Lengauer-Tarjan algorithm. The SLT algorithm may outperform the
// simple LT algorithm for very large dense graphs.
func DominatorsSLT(root graph.Node, g graph.Directed) DominatorTree {
// The algorithm used here is essentially the
// sophisticated Lengauer and Tarjan algorithm
// described in
// https://doi.org/10.1145%2F357062.357071
lt := sLengauerTarjan{
indexOf: make(map[int64]int),
base: sltNode{semi: -1},
}
lt.base.label = <.base
// step 1.
lt.dfs(g, root)
for i := len(lt.nodes) - 1; i > 0; i-- {
w := lt.nodes[i]
// step 2.
for _, v := range w.pred {
u := lt.eval(v)
if u.semi < w.semi {
w.semi = u.semi
}
}
lt.nodes[w.semi].bucket[w] = struct{}{}
lt.link(w.parent, w)
// step 3.
for v := range w.parent.bucket {
delete(w.parent.bucket, v)
u := lt.eval(v)
if u.semi < v.semi {
v.dom = u
} else {
v.dom = w.parent
}
}
}
// step 4.
for _, w := range lt.nodes[1:] {
if w.dom.node.ID() != lt.nodes[w.semi].node.ID() {
w.dom = w.dom.dom
}
}
// Construct the public-facing dominator tree structure.
dominatorOf := make(map[int64]graph.Node)
dominatedBy := make(map[int64][]graph.Node)
for _, w := range lt.nodes[1:] {
dominatorOf[w.node.ID()] = w.dom.node
did := w.dom.node.ID()
dominatedBy[did] = append(dominatedBy[did], w.node)
}
return DominatorTree{root: root, dominatorOf: dominatorOf, dominatedBy: dominatedBy}
}
// sLengauerTarjan holds global state of the Lengauer-Tarjan algorithm.
// This is a mapping between nodes and the postordering of the nodes.
type sLengauerTarjan struct {
// nodes is the nodes traversed during the
// Lengauer-Tarjan depth-first-search.
nodes []*sltNode
// indexOf contains a mapping between
// the id-dense representation of the
// graph and the potentially id-sparse
// nodes held in nodes.
//
// This corresponds to the vertex
// number of the node in the Lengauer-
// Tarjan algorithm.
indexOf map[int64]int
// base is the base label for balanced
// tree path compression used in the
// sophisticated Lengauer-Tarjan
// algorith,
base sltNode
}
// sltNode is a graph node with accounting for the Lengauer-Tarjan
// algorithm.
//
// For the purposes of documentation the ltNode is given the name w.
type sltNode struct {
node graph.Node
// parent is vertex which is the parent of w
// in the spanning tree generated by the search.
parent *sltNode
// pred is the set of vertices v such that (v, w)
// is an edge of the graph.
pred []*sltNode
// semi is a number defined as follows:
// (i) After w is numbered but before its semidominator
// is computed, semi is the number of w.
// (ii) After the semidominator of w is computed, semi
// is the number of the semidominator of w.
semi int
// size is the tree size of w used in the
// sophisticated algorithm.
size int
// child is the child node of w used in the
// sophisticated algorithm.
child *sltNode
// bucket is the set of vertices whose
// semidominator is w.
bucket map[*sltNode]struct{}
// dom is vertex defined as follows:
// (i) After step 3, if the semidominator of w is its
// immediate dominator, then dom is the immediate
// dominator of w. Otherwise dom is a vertex v
// whose number is smaller than w and whose immediate
// dominator is also w's immediate dominator.
// (ii) After step 4, dom is the immediate dominator of w.
dom *sltNode
// In general ancestor is nil only if w is a tree root
// in the forest; otherwise ancestor is an ancestor
// of w in the forest.
ancestor *sltNode
// Initially label is w. It is adjusted during
// the algorithm to maintain invariant (3) in the
// Lengauer and Tarjan paper.
label *sltNode
}
// dfs is the Sophisticated Lengauer-Tarjan DFS procedure.
func (lt *sLengauerTarjan) dfs(g graph.Directed, v graph.Node) {
i := len(lt.nodes)
lt.indexOf[v.ID()] = i
ltv := &sltNode{
node: v,
semi: i,
size: 1,
child: <.base,
bucket: make(map[*sltNode]struct{}),
}
ltv.label = ltv
lt.nodes = append(lt.nodes, ltv)
to := g.From(v.ID())
for to.Next() {
w := to.Node()
wid := w.ID()
idx, ok := lt.indexOf[wid]
if !ok {
lt.dfs(g, w)
// We place this below the recursive call
// in contrast to the original algorithm
// since w needs to be initialised, and
// this happens in the child call to dfs.
idx, ok = lt.indexOf[wid]
if !ok {
panic("path: unintialized node")
}
lt.nodes[idx].parent = ltv
}
ltw := lt.nodes[idx]
ltw.pred = append(ltw.pred, ltv)
}
}
// compress is the Sophisticated Lengauer-Tarjan COMPRESS procedure.
func (lt *sLengauerTarjan) compress(v *sltNode) {
if v.ancestor.ancestor != nil {
lt.compress(v.ancestor)
if v.ancestor.label.semi < v.label.semi {
v.label = v.ancestor.label
}
v.ancestor = v.ancestor.ancestor
}
}
// eval is the Sophisticated Lengauer-Tarjan EVAL function.
func (lt *sLengauerTarjan) eval(v *sltNode) *sltNode {
if v.ancestor == nil {
return v.label
}
lt.compress(v)
if v.ancestor.label.semi >= v.label.semi {
return v.label
}
return v.ancestor.label
}
// link is the Sophisticated Lengauer-Tarjan LINK procedure.
func (*sLengauerTarjan) link(v, w *sltNode) {
s := w
for w.label.semi < s.child.label.semi {
if s.size+s.child.child.size >= 2*s.child.size {
s.child.ancestor = s
s.child = s.child.child
} else {
s.child.size = s.size
s.ancestor = s.child
s = s.child
}
}
s.label = w.label
v.size += w.size
if v.size < 2*w.size {
s, v.child = v.child, s
}
for s != nil {
s.ancestor = v
s = s.child
}
}
|