1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// Copyright ©2022 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rdf_test
import (
"fmt"
"io"
"log"
"os"
"strings"
"gonum.org/v1/gonum/graph/formats/rdf"
)
func ExampleGraph() {
f, err := os.Open("path/to/graph.nq")
if err != nil {
log.Fatal(err)
}
dec := rdf.NewDecoder(f)
var statements []*rdf.Statement
for {
s, err := dec.Unmarshal()
if err != nil {
if err != io.EOF {
log.Fatalf("error during decoding: %v", err)
}
break
}
// Statements can be filtered at this point to exclude unwanted
// or irrelevant parts of the graph.
statements = append(statements, s)
}
f.Close()
// Canonicalize blank nodes to reduce memory footprint.
statements, err = rdf.URDNA2015(statements, statements)
if err != nil {
log.Fatal(err)
}
g := rdf.NewGraph()
for _, s := range statements {
g.AddStatement(s)
}
// Do something with the graph.
}
const gods = `
_:alcmene <l:type> "human" .
_:alcmene <p:name> "Alcmene" .
_:cerberus <a:lives> _:cerberushome .
_:cerberus <l:type> "monster" .
_:cerberus <p:name> "Cerberus" .
_:cerberushome <p:location> _:tartarus .
_:cronos <l:type> "titan" .
_:cronos <p:name> "Cronos" .
_:hades <a:lives> _:hadeshome .
_:hades <h:brother> _:poseidon .
_:hades <h:brother> _:zeus .
_:hades <h:pet> _:cerberus .
_:hades <l:type> "god" .
_:hades <p:name> "Hades" .
_:hadeshome <p:location> _:tartarus .
_:hadeshome <p:reason> "it is peaceful" .
_:heracles <a:battled> _:cerberus .
_:heracles <a:battled> _:hydra .
_:heracles <a:battled> _:nemean .
_:heracles <h:father> _:zeus .
_:heracles <h:mother> _:alcmene .
_:heracles <l:type> "demigod" .
_:heracles <p:name> "Heracles" .
_:hydra <l:type> "monster" .
_:hydra <p:name> "Lernean Hydra" .
_:nemean <l:type> "monster" .
_:nemean <p:name> "Nemean Lion" .
_:olympus <l:type> "location" .
_:olympus <p:name> "Olympus" .
_:poseidon <a:lives> _:poseidonhome .
_:poseidon <h:brother> _:hades .
_:poseidon <h:brother> _:zeus .
_:poseidon <l:type> "god" .
_:poseidon <p:name> "Poseidon" .
_:poseidonhome <p:location> _:sea .
_:poseidonhome <p:reason> "it was given to him" .
_:sea <l:type> "location" .
_:sea <p:name> "Sea" .
_:tartarus <l:type> "location" .
_:tartarus <p:name> "Tartarus" .
_:theseus <a:battled> _:cerberus .
_:theseus <h:father> _:poseidon .
_:theseus <l:type> "human" .
_:theseus <p:name> "Theseus" .
_:zeus <a:lives> _:zeushome .
_:zeus <h:brother> _:hades .
_:zeus <h:brother> _:poseidon .
_:zeus <h:father> _:cronos .
_:zeus <l:type> "god" .
_:zeus <p:name> "Zeus" .
_:zeushome <p:location> _:olympus .
_:zeushome <p:reason> "he can see everything" .
`
func ExampleQuery() {
g := rdf.NewGraph()
dec := rdf.NewDecoder(strings.NewReader(gods))
for {
s, err := dec.Unmarshal()
if err != nil {
if err != io.EOF {
log.Fatalf("error during decoding: %v", err)
}
break
}
g.AddStatement(s)
}
it := g.Nodes()
nodes := make([]rdf.Term, 0, it.Len())
for it.Next() {
nodes = append(nodes, it.Node().(rdf.Term))
}
// Construct a query start point. This can be reused. If a specific
// node is already known it can be used to reduce the work required here.
heracles := g.Query(nodes...).In(func(s *rdf.Statement) bool {
// Traverse in from the name "Heracles".
return s.Predicate.Value == "<p:name>" && s.Object.Value == `"Heracles"`
})
// father and name filter statements on their predicate values. These
// are used in the queries that follow.
father := func(s *rdf.Statement) bool {
// Traverse across <h:father>.
return s.Predicate.Value == "<h:father>"
}
name := func(s *rdf.Statement) bool {
// Traverse across <p:name>.
return s.Predicate.Value == "<p:name>"
}
// g.V().has('name', 'heracles').out('father').out('father').values('name')
for _, r := range heracles.
Out(father). // Traverse out across <h:father> to get to Zeus.
Out(father). // and again to get to Cronos.
Out(name). // Retrieve the name by traversing the <p:name> edges.
Result() {
fmt.Printf("Heracles' grandfather: %s\n", r.Value)
}
// g.V().has('name', 'heracles').repeat(out('father')).emit().values('name')
var i int
heracles.Repeat(func(q rdf.Query) (rdf.Query, bool) {
q = q.Out(father)
for _, r := range q.Out(name).Result() {
fmt.Printf("Heracles' lineage %d: %s\n", i, r.Value)
}
i++
return q, true
})
// parents and typ are helper filters for queries below.
parents := func(s *rdf.Statement) bool {
// Traverse across <h:father> or <h:mother>
return s.Predicate.Value == "<h:father>" || s.Predicate.Value == "<h:mother>"
}
typ := func(s *rdf.Statement) bool {
// Traverse across <l:type>.
return s.Predicate.Value == "<l:type>"
}
// g.V(heracles).out('father', 'mother').label()
for _, r := range heracles.Out(parents).Out(typ).Result() {
fmt.Printf("Heracles' parents' types: %s\n", r.Value)
}
// battled is a helper filter for queries below.
battled := func(s *rdf.Statement) bool {
// Traverse across <a:battled>.
return s.Predicate.Value == "<a:battled>"
}
// g.V(heracles).out('battled').label()
for _, r := range heracles.Out(battled).Out(typ).Result() {
fmt.Printf("Heracles' antagonists' types: %s\n", r.Value)
}
// g.V(heracles).out('battled').valueMap()
for _, r := range heracles.Out(battled).Result() {
m := make(map[string]string)
g.Query(r).Out(func(s *rdf.Statement) bool {
// Store any p: namespace in the map.
if strings.HasPrefix(s.Predicate.Value, "<p:") {
prop := strings.TrimSuffix(strings.TrimPrefix(s.Predicate.Value, "<p:"), ">")
m[prop] = s.Object.Value
}
// But don't store the result into the query.
return false
})
fmt.Println(m)
}
// g.V(heracles).as('h').out('battled').in('battled').where(neq('h')).values('name')
for _, r := range heracles.Out(battled).In(battled).Not(heracles).Out(name).Result() {
fmt.Printf("Heracles' allies: %s\n", r.Value)
}
// Construct a query start point for Hades, this time using a restricted
// starting set only including the name. It would also be possible to
// start directly from a query with the term _:hades, but that depends
// on the blank node identity, which may be altered, for example by
// canonicalization.
h, ok := g.TermFor(`"Hades"`)
if !ok {
log.Fatal("could not find term for Hades")
}
hades := g.Query(h).In(name)
// g.V(hades).as('x').out('lives').in('lives').where(neq('x')).values('name')
//
// This is more complex with RDF since properties are encoded by
// attachment to anonymous blank nodes, so we take two steps, the
// first to the blank node for where Hades lives and then the second
// to get the actual location.
lives := func(s *rdf.Statement) bool {
// Traverse across <a:lives>.
return s.Predicate.Value == "<a:lives>"
}
location := func(s *rdf.Statement) bool {
// Traverse across <p:location>.
return s.Predicate.Value == "<p:location>"
}
for _, r := range hades.Out(lives).Out(location).In(location).In(lives).Not(hades).Out(name).Result() {
fmt.Printf("Hades lives with: %s\n", r.Value)
}
// g.V(hades).out('brother').as('god').out('lives').as('place').select('god', 'place').by('name')
brother := func(s *rdf.Statement) bool {
// Traverse across <h:brother>.
return s.Predicate.Value == "<h:brother>"
}
for _, r := range hades.Out(brother).Result() {
m := make(map[string]string)
as := func(key string) func(s *rdf.Statement) bool {
return func(s *rdf.Statement) bool {
// Store any <p:name> objects in the map.
if s.Predicate.Value == "<p:name>" {
m[key] = s.Object.Value
}
// But don't store the result into the query.
return false
}
}
sub := g.Query(r)
sub.Out(as("god"))
sub.Out(lives).Out(location).Out(as("place"))
fmt.Println(m)
}
// The query above but with the reason for their choice.
for _, r := range hades.Out(brother).Result() {
m := make(map[string]string)
// as stores the query result under the provided key
// for m, and if cont is not nil, allows the chain
// to continue.
as := func(query, key string, cont func(s *rdf.Statement) bool) func(s *rdf.Statement) bool {
return func(s *rdf.Statement) bool {
// Store any objects matching the query in the map.
if s.Predicate.Value == query {
m[key] = s.Object.Value
}
// Continue with chain if cont is not nil and
// the statement satisfies its condition.
if cont == nil {
return false
}
return cont(s)
}
}
sub := g.Query(r)
sub.Out(as("<p:name>", "god", nil))
sub.Out(lives).
Out(as("<p:reason>", "reason", location)).
Out(as("<p:name>", "place", nil))
fmt.Println(m)
}
// Unordered output:
//
// Heracles' grandfather: "Cronos"
// Heracles' lineage 0: "Zeus"
// Heracles' lineage 1: "Cronos"
// Heracles' parents' types: "god"
// Heracles' parents' types: "human"
// Heracles' antagonists' types: "monster"
// Heracles' antagonists' types: "monster"
// Heracles' antagonists' types: "monster"
// map[name:"Cerberus"]
// map[name:"Lernean Hydra"]
// map[name:"Nemean Lion"]
// Heracles' allies: "Theseus"
// Hades lives with: "Cerberus"
// map[god:"Zeus" place:"Olympus"]
// map[god:"Poseidon" place:"Sea"]
// map[god:"Zeus" place:"Olympus" reason:"he can see everything"]
// map[god:"Poseidon" place:"Sea" reason:"it was given to him"]
}
|