File: query.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (277 lines) | stat: -rw-r--r-- 7,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright ©2022 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package rdf

import (
	"gonum.org/v1/gonum/graph"
	"gonum.org/v1/gonum/internal/order"
)

// Query represents a step in an RDF graph query. The methods on Query
// provide a simple graph query language.
type Query struct {
	g graph.Directed

	terms []Term
}

// NewQuery returns a query of g starting from the given nodes.
// Queries may not be mixed between distinct graphs. The type of
// g must be comparable. Query operations only consider edges that
// are represented by a *Statement or is an edge with lines held
// in a graph.Lines with at least one *Statement.
func NewQuery(g graph.Directed, from ...Term) Query {
	return Query{g: g, terms: from}
}

// Query returns a query of the receiver starting from the given nodes.
// Queries may not be mixed between distinct graphs.
func (g *Graph) Query(from ...Term) Query {
	return Query{g: g, terms: from}
}

// Out returns a query holding nodes reachable out from the receiver's
// starting nodes via statements that satisfy fn.
func (q Query) Out(fn func(s *Statement) bool) Query {
	r := Query{g: q.g}
	for _, s := range q.terms {
		it := q.g.From(s.ID())
		for it.Next() {
			if ConnectedByAny(q.g.Edge(s.ID(), it.Node().ID()), fn) {
				r.terms = append(r.terms, it.Node().(Term))
			}
		}
	}
	return r
}

// In returns a query holding nodes reachable in from the receiver's
// starting nodes via statements that satisfy fn.
func (q Query) In(fn func(s *Statement) bool) Query {
	r := Query{g: q.g}
	for _, s := range q.terms {
		it := q.g.To(s.ID())
		for it.Next() {
			if ConnectedByAny(q.g.Edge(it.Node().ID(), s.ID()), fn) {
				r.terms = append(r.terms, it.Node().(Term))
			}
		}
	}
	return r
}

// HasAllOut returns a query holding nodes from the receiver's
// initial set where all outgoing statements satisfy fn. The
// query short circuits, so fn is not called after the first
// failure to match.
func (q Query) HasAllOut(fn func(s *Statement) bool) Query {
	r := Query{g: q.g}
	notFn := not(fn)
loop:
	for _, s := range q.terms {
		it := q.g.From(s.ID())
		for it.Next() {
			if ConnectedByAny(q.g.Edge(s.ID(), it.Node().ID()), notFn) {
				continue loop
			}
		}
		r.terms = append(r.terms, s)
	}
	return r
}

// HasAllIn returns a query holding nodes from the receiver's
// initial set where all incoming statements satisfy fn. The
// query short circuits, so fn is not called after the first
// failure to match.
func (q Query) HasAllIn(fn func(s *Statement) bool) Query {
	r := Query{g: q.g}
	notFn := not(fn)
loop:
	for _, s := range q.terms {
		it := q.g.To(s.ID())
		for it.Next() {
			if ConnectedByAny(q.g.Edge(it.Node().ID(), s.ID()), notFn) {
				continue loop
			}
		}
		r.terms = append(r.terms, s)
	}
	return r
}

// HasAnyOut returns a query holding nodes from the receiver's
// initial set where any outgoing statements satisfies fn. The
// query short circuits, so fn is not called after the first match.
func (q Query) HasAnyOut(fn func(s *Statement) bool) Query {
	r := Query{g: q.g}
	for _, s := range q.terms {
		it := q.g.From(s.ID())
		for it.Next() {
			if ConnectedByAny(q.g.Edge(s.ID(), it.Node().ID()), fn) {
				r.terms = append(r.terms, s)
				break
			}
		}
	}
	return r
}

// HasAnyIn returns a query holding nodes from the receiver's
// initial set where any incoming statements satisfies fn. The
// query short circuits, so fn is not called after the first match.
func (q Query) HasAnyIn(fn func(s *Statement) bool) Query {
	r := Query{g: q.g}
	for _, s := range q.terms {
		it := q.g.To(s.ID())
		for it.Next() {
			if ConnectedByAny(q.g.Edge(it.Node().ID(), s.ID()), fn) {
				r.terms = append(r.terms, s)
				break
			}
		}
	}
	return r
}

// not returns the negation of fn.
func not(fn func(s *Statement) bool) func(s *Statement) bool {
	return func(s *Statement) bool { return !fn(s) }
}

// And returns a query that holds the conjunction of q and p.
func (q Query) And(p Query) Query {
	if q.g != p.g {
		panic("rdf: binary query operation parameters from distinct graphs")
	}
	order.ByID(q.terms)
	order.ByID(p.terms)
	r := Query{g: q.g}
	var i, j int
	for i < len(q.terms) && j < len(p.terms) {
		qi := q.terms[i]
		pj := p.terms[j]
		switch {
		case qi.ID() < pj.ID():
			i++
		case pj.ID() < qi.ID():
			j++
		default:
			r.terms = append(r.terms, qi)
			i++
			j++
		}
	}
	return r
}

// Or returns a query that holds the disjunction of q and p.
func (q Query) Or(p Query) Query {
	if q.g != p.g {
		panic("rdf: binary query operation parameters from distinct graphs")
	}
	order.ByID(q.terms)
	order.ByID(p.terms)
	r := Query{g: q.g}
	var i, j int
	for i < len(q.terms) && j < len(p.terms) {
		qi := q.terms[i]
		pj := p.terms[j]
		switch {
		case qi.ID() < pj.ID():
			if len(r.terms) == 0 || r.terms[len(r.terms)-1].UID != qi.UID {
				r.terms = append(r.terms, qi)
			}
			i++
		case pj.ID() < qi.ID():
			if len(r.terms) == 0 || r.terms[len(r.terms)-1].UID != pj.UID {
				r.terms = append(r.terms, pj)
			}
			j++
		default:
			if len(r.terms) == 0 || r.terms[len(r.terms)-1].UID != qi.UID {
				r.terms = append(r.terms, qi)
			}
			i++
			j++
		}
	}
	r.terms = append(r.terms, q.terms[i:]...)
	r.terms = append(r.terms, p.terms[j:]...)
	return r
}

// Not returns a query that holds q less p.
func (q Query) Not(p Query) Query {
	if q.g != p.g {
		panic("rdf: binary query operation parameters from distinct graphs")
	}
	order.ByID(q.terms)
	order.ByID(p.terms)
	r := Query{g: q.g}
	var i, j int
	for i < len(q.terms) && j < len(p.terms) {
		qi := q.terms[i]
		pj := p.terms[j]
		switch {
		case qi.ID() < pj.ID():
			r.terms = append(r.terms, qi)
			i++
		case pj.ID() < qi.ID():
			j++
		default:
			i++
		}
	}
	if len(r.terms) < len(q.terms) {
		r.terms = append(r.terms, q.terms[i:len(q.terms)+min(0, i-len(r.terms))]...)
	}
	return r
}

// Repeat repeatedly calls fn on q until the set of results is empty or
// ok is false, and then returns the result. If the last non-empty result
// is wanted, fn should return its input and false when the partial
// traversal returns an empty result.
//
//	result := start.Repeat(func(q rdf.Query) (rdf.Query, bool) {
//		r := q.Out(condition)
//		if r.Len() == 0 {
//			return q, false
//		}
//		return r, true
//	}).Result()
func (q Query) Repeat(fn func(Query) (q Query, ok bool)) Query {
	for {
		var ok bool
		q, ok = fn(q)
		if !ok || len(q.terms) == 0 {
			return q
		}
	}
}

// Unique returns a copy of the receiver that contains only one instance
// of each term.
func (q Query) Unique() Query {
	order.ByID(q.terms)
	r := Query{g: q.g}
	for i, t := range q.terms {
		if i == 0 || t.UID != q.terms[i-1].UID {
			r.terms = append(r.terms, t)
		}
	}
	return r
}

// Len returns the number of terms held by the query.
func (q Query) Len() int {
	return len(q.terms)
}

// Result returns the terms held by the query.
func (q Query) Result() []Term {
	return q.terms
}