File: set.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (177 lines) | stat: -rw-r--r-- 3,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package set

import "gonum.org/v1/gonum/graph"

type Int interface{ ~int | ~int64 }

type Ints[T Int] map[T]struct{}

// Add inserts an element into the set.
func (s Ints[T]) Add(e T) {
	s[e] = struct{}{}
}

// Has reports the existence of the element in the set.
func (s Ints[T]) Has(e T) bool {
	_, ok := s[e]
	return ok
}

// Remove deletes the specified element from the set.
func (s Ints[T]) Remove(e T) {
	delete(s, e)
}

// Count reports the number of elements stored in the set.
func (s Ints[T]) Count() int {
	return len(s)
}

// IntsEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func IntsEqual[T Int](a, b Ints[T]) bool {
	if intsSame(a, b) {
		return true
	}

	if len(a) != len(b) {
		return false
	}

	for e := range a {
		if _, ok := b[e]; !ok {
			return false
		}
	}

	return true
}

// Nodes is a set of nodes keyed in their integer identifiers.
type Nodes map[int64]graph.Node

// NewNodes returns a new Nodes.
func NewNodes() Nodes {
	return make(Nodes)
}

// NewNodesSize returns a new Nodes with the given size hint, n.
func NewNodesSize(n int) Nodes {
	return make(Nodes, n)
}

// The simple accessor methods for Nodes are provided to allow ease of
// implementation change should the need arise.

// Add inserts an element into the set.
func (s Nodes) Add(n graph.Node) {
	s[n.ID()] = n
}

// Remove deletes the specified element from the set.
func (s Nodes) Remove(e graph.Node) {
	delete(s, e.ID())
}

// Count returns the number of element in the set.
func (s Nodes) Count() int {
	return len(s)
}

// Has reports the existence of the elements in the set.
func (s Nodes) Has(n graph.Node) bool {
	_, ok := s[n.ID()]
	return ok
}

// CloneNodes returns a clone of src.
func CloneNodes(src Nodes) Nodes {
	dst := make(Nodes, len(src))
	for e, n := range src {
		dst[e] = n
	}
	return dst
}

// Equal reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Equal(a, b Nodes) bool {
	if same(a, b) {
		return true
	}

	if len(a) != len(b) {
		return false
	}

	for e := range a {
		if _, ok := b[e]; !ok {
			return false
		}
	}

	return true
}

// UnionOfNodes returns the union of a and b.
//
// The union of two sets, a and b, is the set containing all the
// elements of each, for instance:
//
//	{a,b,c} UNION {d,e,f} = {a,b,c,d,e,f}
//
// Since sets may not have repetition, unions of two sets that overlap
// do not contain repeat elements, that is:
//
//	{a,b,c} UNION {b,c,d} = {a,b,c,d}
func UnionOfNodes(a, b Nodes) Nodes {
	if same(a, b) {
		return CloneNodes(a)
	}

	dst := make(Nodes)
	for e, n := range a {
		dst[e] = n
	}
	for e, n := range b {
		dst[e] = n
	}

	return dst
}

// IntersectionOfNodes returns the intersection of a and b.
//
// The intersection of two sets, a and b, is the set containing all
// the elements shared between the two sets, for instance:
//
//	{a,b,c} INTERSECT {b,c,d} = {b,c}
//
// The intersection between a set and itself is itself, and thus
// effectively a copy operation:
//
//	{a,b,c} INTERSECT {a,b,c} = {a,b,c}
//
// The intersection between two sets that share no elements is the empty
// set:
//
//	{a,b,c} INTERSECT {d,e,f} = {}
func IntersectionOfNodes(a, b Nodes) Nodes {
	if same(a, b) {
		return CloneNodes(a)
	}
	dst := make(Nodes)
	if len(a) > len(b) {
		a, b = b, a
	}
	for e, n := range a {
		if _, ok := b[e]; ok {
			dst[e] = n
		}
	}
	return dst
}