1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package layout
import (
"math"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/spatial/barneshut"
"gonum.org/v1/gonum/spatial/r2"
)
// EadesR2 implements the graph layout algorithm essentially as
// described in "A heuristic for graph drawing", Congressus
// numerantium 42:149-160.
// The implementation here uses the Barnes-Hut approximation for
// global repulsion calculation, and edge weights are considered
// when calculating adjacent node attraction.
type EadesR2 struct {
// Updates is the number of updates to perform.
Updates int
// Repulsion is the strength of the global
// repulsive force between nodes in the
// layout. It corresponds to C3 in the paper.
Repulsion float64
// Rate is the gradient descent rate. It
// corresponds to C4 in the paper.
Rate float64
// Theta is the Barnes-Hut theta constant.
Theta float64
// Src is the source of randomness used
// to initialize the nodes' locations. If
// Src is nil, the global random number
// generator is used.
Src rand.Source
nodes graph.Nodes
indexOf map[int64]int
particles []barneshut.Particle2
forces []r2.Vec
}
// Update is the EadesR2 spatial graph update function.
func (u *EadesR2) Update(g graph.Graph, layout LayoutR2) bool {
if u.Updates <= 0 {
return false
}
u.Updates--
if !layout.IsInitialized() {
var rnd func() float64
if u.Src == nil {
rnd = rand.Float64
} else {
rnd = rand.New(u.Src).Float64
}
u.nodes = g.Nodes()
u.indexOf = make(map[int64]int, u.nodes.Len())
if u.nodes.Len() >= 0 {
u.particles = make([]barneshut.Particle2, 0, u.nodes.Len())
}
for u.nodes.Next() {
id := u.nodes.Node().ID()
u.indexOf[id] = len(u.particles)
u.particles = append(u.particles, eadesR2Node{id: id, pos: r2.Vec{X: rnd(), Y: rnd()}})
}
u.forces = make([]r2.Vec, len(u.particles))
}
u.nodes.Reset()
// Apply global repulsion.
plane, err := barneshut.NewPlane(u.particles)
if err != nil {
return false
}
var updated bool
for i, p := range u.particles {
f := r2.Scale(-u.Repulsion, plane.ForceOn(p, u.Theta, barneshut.Gravity2))
// Prevent marginal updates that can be caused by
// floating point error when nodes are very far apart.
if math.Hypot(f.X, f.Y) > 1e-12 {
updated = true
}
u.forces[i] = f
}
// Handle edge weighting for attraction.
var weight func(uid, vid int64) float64
if wg, ok := g.(graph.Weighted); ok {
if _, ok := g.(graph.Directed); ok {
weight = func(xid, yid int64) float64 {
var w float64
f, ok := wg.Weight(xid, yid)
if ok {
w += f
}
r, ok := wg.Weight(yid, xid)
if ok {
w += r
}
return w
}
} else {
weight = func(xid, yid int64) float64 {
w, ok := wg.Weight(xid, yid)
if ok {
return w
}
return 0
}
}
} else {
// This is only called when the adjacency is known so just return unit.
weight = func(_, _ int64) float64 { return 1 }
}
seen := make(map[[2]int64]bool)
for u.nodes.Next() {
xid := u.nodes.Node().ID()
xidx := u.indexOf[xid]
to := g.From(xid)
for to.Next() {
yid := to.Node().ID()
if seen[[2]int64{xid, yid}] {
continue
}
seen[[2]int64{yid, xid}] = true
yidx := u.indexOf[yid]
// Apply adjacent node attraction.
v := r2.Sub(u.particles[yidx].Coord2(), u.particles[xidx].Coord2())
f := r2.Scale(weight(xid, yid)*math.Log(math.Hypot(v.X, v.Y)), v)
if math.IsInf(f.X, 0) || math.IsInf(f.Y, 0) {
return false
}
if math.Hypot(f.X, f.Y) > 1e-12 {
updated = true
}
u.forces[xidx] = r2.Add(u.forces[xidx], f)
u.forces[yidx] = r2.Sub(u.forces[yidx], f)
}
}
if !updated {
return false
}
rate := u.Rate
if rate == 0 {
rate = 0.1
}
for i, f := range u.forces {
n := u.particles[i].(eadesR2Node)
n.pos = r2.Add(n.pos, r2.Scale(rate, f))
u.particles[i] = n
layout.SetCoord2(n.id, n.pos)
}
return true
}
type eadesR2Node struct {
id int64
pos r2.Vec
}
func (p eadesR2Node) Coord2() r2.Vec { return p.pos }
func (p eadesR2Node) Mass() float64 { return 1 }
|