File: betweenness.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (258 lines) | stat: -rw-r--r-- 7,321 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package network

import (
	"math"

	"gonum.org/v1/gonum/graph"
	"gonum.org/v1/gonum/graph/internal/linear"
	"gonum.org/v1/gonum/graph/path"
)

// Betweenness returns the non-zero betweenness centrality for nodes in the unweighted graph g.
//
//	C_B(v) = \sum_{s ≠ v ≠ t ∈ V} (\sigma_{st}(v) / \sigma_{st})
//
// where \sigma_{st} and \sigma_{st}(v) are the number of shortest paths from s to t,
// and the subset of those paths containing v respectively.
func Betweenness(g graph.Graph) map[int64]float64 {
	// Brandes' algorithm for finding betweenness centrality for nodes in
	// and unweighted graph:
	//
	// http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

	// TODO(kortschak): Consider using the parallel algorithm when
	// GOMAXPROCS != 1.
	//
	// http://htor.inf.ethz.ch/publications/img/edmonds-hoefler-lumsdaine-bc.pdf

	// Also note special case for sparse networks:
	// http://wwwold.iit.cnr.it/staff/marco.pellegrini/papiri/asonam-final.pdf

	cb := make(map[int64]float64)
	brandes(g, func(s graph.Node, stack linear.NodeStack, p map[int64][]graph.Node, delta, sigma map[int64]float64) {
		for stack.Len() != 0 {
			w := stack.Pop()
			for _, v := range p[w.ID()] {
				delta[v.ID()] += sigma[v.ID()] / sigma[w.ID()] * (1 + delta[w.ID()])
			}
			if w.ID() != s.ID() {
				if d := delta[w.ID()]; d != 0 {
					cb[w.ID()] += d
				}
			}
		}
	})
	return cb
}

// EdgeBetweenness returns the non-zero betweenness centrality for edges in the
// unweighted graph g. For an edge e the centrality C_B is computed as
//
//	C_B(e) = \sum_{s ≠ t ∈ V} (\sigma_{st}(e) / \sigma_{st}),
//
// where \sigma_{st} and \sigma_{st}(e) are the number of shortest paths from s
// to t, and the subset of those paths containing e, respectively.
//
// If g is undirected, edges are retained such that u.ID < v.ID where u and v are
// the nodes of e.
func EdgeBetweenness(g graph.Graph) map[[2]int64]float64 {
	// Modified from Brandes' original algorithm as described in Algorithm 7
	// with the exception that node betweenness is not calculated:
	//
	// http://algo.uni-konstanz.de/publications/b-vspbc-08.pdf

	_, isUndirected := g.(graph.Undirected)
	cb := make(map[[2]int64]float64)
	brandes(g, func(s graph.Node, stack linear.NodeStack, p map[int64][]graph.Node, delta, sigma map[int64]float64) {
		for stack.Len() != 0 {
			w := stack.Pop()
			for _, v := range p[w.ID()] {
				c := sigma[v.ID()] / sigma[w.ID()] * (1 + delta[w.ID()])
				vid := v.ID()
				wid := w.ID()
				if isUndirected && wid < vid {
					vid, wid = wid, vid
				}
				cb[[2]int64{vid, wid}] += c
				delta[v.ID()] += c
			}
		}
	})
	return cb
}

// brandes is the common code for Betweenness and EdgeBetweenness. It corresponds
// to algorithm 1 in http://algo.uni-konstanz.de/publications/b-vspbc-08.pdf with
// the accumulation loop provided by the accumulate closure.
func brandes(g graph.Graph, accumulate func(s graph.Node, stack linear.NodeStack, p map[int64][]graph.Node, delta, sigma map[int64]float64)) {
	var (
		nodes = graph.NodesOf(g.Nodes())
		stack linear.NodeStack
		p     = make(map[int64][]graph.Node, len(nodes))
		sigma = make(map[int64]float64, len(nodes))
		d     = make(map[int64]int, len(nodes))
		delta = make(map[int64]float64, len(nodes))
		queue linear.NodeQueue
	)
	for _, s := range nodes {
		stack = stack[:0]

		for _, w := range nodes {
			p[w.ID()] = p[w.ID()][:0]
		}

		for _, t := range nodes {
			sigma[t.ID()] = 0
			d[t.ID()] = -1
		}
		sigma[s.ID()] = 1
		d[s.ID()] = 0

		queue.Enqueue(s)
		for queue.Len() != 0 {
			v := queue.Dequeue()
			vid := v.ID()
			stack.Push(v)
			to := g.From(vid)
			for to.Next() {
				w := to.Node()
				wid := w.ID()
				// w found for the first time?
				if d[wid] < 0 {
					queue.Enqueue(w)
					d[wid] = d[vid] + 1
				}
				// shortest path to w via v?
				if d[wid] == d[vid]+1 {
					sigma[wid] += sigma[vid]
					p[wid] = append(p[wid], v)
				}
			}
		}

		for _, v := range nodes {
			delta[v.ID()] = 0
		}

		// S returns vertices in order of non-increasing distance from s
		accumulate(s, stack, p, delta, sigma)
	}
}

// BetweennessWeighted returns the non-zero betweenness centrality for nodes in the weighted
// graph g used to construct the given shortest paths.
//
//	C_B(v) = \sum_{s ≠ v ≠ t ∈ V} (\sigma_{st}(v) / \sigma_{st})
//
// where \sigma_{st} and \sigma_{st}(v) are the number of shortest paths from s to t,
// and the subset of those paths containing v respectively.
func BetweennessWeighted(g graph.Weighted, p path.AllShortest) map[int64]float64 {
	cb := make(map[int64]float64)

	nodes := graph.NodesOf(g.Nodes())
	for i, s := range nodes {
		sid := s.ID()
		for j, t := range nodes {
			if i == j {
				continue
			}
			tid := t.ID()
			d := p.Weight(sid, tid)
			if math.IsInf(d, 0) {
				continue
			}

			// If we have a unique path, don't do the
			// extra work needed to get all paths.
			path, _, unique := p.Between(sid, tid)
			if unique {
				for _, v := range path[1 : len(path)-1] {
					// For undirected graphs we double count
					// passage though nodes. This is consistent
					// with Brandes' algorithm's behaviour.
					cb[v.ID()]++
				}
				continue
			}

			// Otherwise iterate over all paths.
			paths, _ := p.AllBetween(sid, tid)
			stFrac := 1 / float64(len(paths))
			for _, path := range paths {
				for _, v := range path[1 : len(path)-1] {
					cb[v.ID()] += stFrac
				}
			}
		}
	}

	return cb
}

// EdgeBetweennessWeighted returns the non-zero betweenness centrality for edges in
// the weighted graph g. For an edge e the centrality C_B is computed as
//
//	C_B(e) = \sum_{s ≠ t ∈ V} (\sigma_{st}(e) / \sigma_{st}),
//
// where \sigma_{st} and \sigma_{st}(e) are the number of shortest paths from s
// to t, and the subset of those paths containing e, respectively.
//
// If g is undirected, edges are retained such that u.ID < v.ID where u and v are
// the nodes of e.
func EdgeBetweennessWeighted(g graph.Weighted, p path.AllShortest) map[[2]int64]float64 {
	cb := make(map[[2]int64]float64)

	_, isUndirected := g.(graph.Undirected)
	nodes := graph.NodesOf(g.Nodes())
	for i, s := range nodes {
		sid := s.ID()
		for j, t := range nodes {
			if i == j {
				continue
			}
			tid := t.ID()
			d := p.Weight(sid, tid)
			if math.IsInf(d, 0) {
				continue
			}

			// If we have a unique path, don't do the
			// extra work needed to get all paths.
			path, _, unique := p.Between(sid, tid)
			if unique {
				for k, v := range path[1:] {
					// For undirected graphs we double count
					// passage though edges. This is consistent
					// with Brandes' algorithm's behaviour.
					uid := path[k].ID()
					vid := v.ID()
					if isUndirected && vid < uid {
						uid, vid = vid, uid
					}
					cb[[2]int64{uid, vid}]++
				}
				continue
			}

			// Otherwise iterate over all paths.
			paths, _ := p.AllBetween(sid, tid)
			stFrac := 1 / float64(len(paths))
			for _, path := range paths {
				for k, v := range path[1:] {
					uid := path[k].ID()
					vid := v.ID()
					if isUndirected && vid < uid {
						uid, vid = vid, uid
					}
					cb[[2]int64{uid, vid}] += stFrac
				}
			}
		}
	}

	return cb
}