File: page.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (418 lines) | stat: -rw-r--r-- 11,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package network

import (
	"math"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/floats"
	"gonum.org/v1/gonum/graph"
	"gonum.org/v1/gonum/mat"
)

// PageRank returns the PageRank weights for nodes of the directed graph g
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
// If g is a graph.WeightedDirected, an edge-weighted PageRank is calculated.
func PageRank(g graph.Directed, damp, tol float64) map[int64]float64 {
	if g, ok := g.(graph.WeightedDirected); ok {
		return edgeWeightedPageRank(g, damp, tol)
	}
	return pageRank(g, damp, tol)
}

// PageRankSparse returns the PageRank weights for nodes of the sparse directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
// If g is a graph.WeightedDirected, an edge-weighted PageRank is calculated.
func PageRankSparse(g graph.Directed, damp, tol float64) map[int64]float64 {
	if g, ok := g.(graph.WeightedDirected); ok {
		return edgeWeightedPageRankSparse(g, damp, tol)
	}
	return pageRankSparse(g, damp, tol)
}

// edgeWeightedPageRank returns the PageRank weights for nodes of the weighted directed graph g
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func edgeWeightedPageRank(g graph.WeightedDirected, damp, tol float64) map[int64]float64 {
	// edgeWeightedPageRank is implemented according to "How Google Finds Your Needle
	// in the Web's Haystack" with the modification that
	// the columns of hyperlink matrix H are calculated with edge weights.
	//
	// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k
	//
	// http://www.ams.org/samplings/feature-column/fcarc-pagerank

	nodes := graph.NodesOf(g.Nodes())
	indexOf := make(map[int64]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}

	m := mat.NewDense(len(nodes), len(nodes), nil)
	dangling := damp / float64(len(nodes))
	for j, u := range nodes {
		to := graph.NodesOf(g.From(u.ID()))
		var z float64
		for _, v := range to {
			if w, ok := g.Weight(u.ID(), v.ID()); ok {
				z += w
			}
		}
		if z != 0 {
			for _, v := range to {
				if w, ok := g.Weight(u.ID(), v.ID()); ok {
					m.Set(indexOf[v.ID()], j, (w*damp)/z)
				}
			}
		} else {
			for i := range nodes {
				m.Set(i, j, dangling)
			}
		}
	}

	matrix := m.RawMatrix().Data
	dt := (1 - damp) / float64(len(nodes))
	for i := range matrix {
		matrix[i] += dt
	}

	last := make([]float64, len(nodes))
	for i := range last {
		last[i] = 1
	}
	lastV := mat.NewVecDense(len(nodes), last)

	vec := make([]float64, len(nodes))
	var sum float64
	for i := range vec {
		r := rand.NormFloat64()
		sum += r
		vec[i] = r
	}
	f := 1 / sum
	for i := range vec {
		vec[i] *= f
	}
	v := mat.NewVecDense(len(nodes), vec)

	for {
		lastV, v = v, lastV
		v.MulVec(m, lastV)
		if normDiff(vec, last) < tol {
			break
		}
	}

	ranks := make(map[int64]float64, len(nodes))
	for i, r := range v.RawVector().Data {
		ranks[nodes[i].ID()] = r
	}

	return ranks
}

// edgeWeightedPageRankSparse returns the PageRank weights for nodes of the sparse weighted directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func edgeWeightedPageRankSparse(g graph.WeightedDirected, damp, tol float64) map[int64]float64 {
	// edgeWeightedPageRankSparse is implemented according to "How Google Finds Your Needle
	// in the Web's Haystack" with the modification that
	// the columns of hyperlink matrix H are calculated with edge weights.
	//
	// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k
	//
	// http://www.ams.org/samplings/feature-column/fcarc-pagerank

	nodes := graph.NodesOf(g.Nodes())
	indexOf := make(map[int64]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}

	m := make(rowCompressedMatrix, len(nodes))
	var dangling compressedRow
	df := damp / float64(len(nodes))
	for j, u := range nodes {
		to := graph.NodesOf(g.From(u.ID()))
		var z float64
		for _, v := range to {
			if w, ok := g.Weight(u.ID(), v.ID()); ok {
				z += w
			}
		}
		if z != 0 {
			for _, v := range to {
				if w, ok := g.Weight(u.ID(), v.ID()); ok {
					m.addTo(indexOf[v.ID()], j, (w*damp)/z)
				}
			}
		} else {
			dangling.addTo(j, df)
		}
	}

	last := make([]float64, len(nodes))
	for i := range last {
		last[i] = 1
	}
	lastV := mat.NewVecDense(len(nodes), last)

	vec := make([]float64, len(nodes))
	var sum float64
	for i := range vec {
		r := rand.NormFloat64()
		sum += r
		vec[i] = r
	}
	f := 1 / sum
	for i := range vec {
		vec[i] *= f
	}
	v := mat.NewVecDense(len(nodes), vec)

	dt := (1 - damp) / float64(len(nodes))
	for {
		lastV, v = v, lastV

		m.mulVecUnitary(v, lastV)          // First term of the G matrix equation;
		with := dangling.dotUnitary(lastV) // Second term;
		away := onesDotUnitary(dt, lastV)  // Last term.

		floats.AddConst(with+away, v.RawVector().Data)
		if normDiff(vec, last) < tol {
			break
		}
	}

	ranks := make(map[int64]float64, len(nodes))
	for i, r := range v.RawVector().Data {
		ranks[nodes[i].ID()] = r
	}

	return ranks
}

// pageRank returns the PageRank weights for nodes of the directed graph g
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func pageRank(g graph.Directed, damp, tol float64) map[int64]float64 {
	// pageRank is implemented according to "How Google Finds Your Needle
	// in the Web's Haystack".
	//
	// G.I^k = alpha.S.I^k + (1-alpha).1/n.1.I^k
	//
	// http://www.ams.org/samplings/feature-column/fcarc-pagerank

	nodes := graph.NodesOf(g.Nodes())
	indexOf := make(map[int64]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}

	m := mat.NewDense(len(nodes), len(nodes), nil)
	dangling := damp / float64(len(nodes))
	for j, u := range nodes {
		to := graph.NodesOf(g.From(u.ID()))
		f := damp / float64(len(to))
		for _, v := range to {
			m.Set(indexOf[v.ID()], j, f)
		}
		if len(to) == 0 {
			for i := range nodes {
				m.Set(i, j, dangling)
			}
		}
	}
	matrix := m.RawMatrix().Data
	dt := (1 - damp) / float64(len(nodes))
	for i := range matrix {
		matrix[i] += dt
	}

	last := make([]float64, len(nodes))
	for i := range last {
		last[i] = 1
	}
	lastV := mat.NewVecDense(len(nodes), last)

	vec := make([]float64, len(nodes))
	var sum float64
	for i := range vec {
		r := rand.NormFloat64()
		sum += r
		vec[i] = r
	}
	f := 1 / sum
	for i := range vec {
		vec[i] *= f
	}
	v := mat.NewVecDense(len(nodes), vec)

	for {
		lastV, v = v, lastV
		v.MulVec(m, lastV)
		if normDiff(vec, last) < tol {
			break
		}
	}

	ranks := make(map[int64]float64, len(nodes))
	for i, r := range v.RawVector().Data {
		ranks[nodes[i].ID()] = r
	}

	return ranks
}

// pageRankSparse returns the PageRank weights for nodes of the sparse directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func pageRankSparse(g graph.Directed, damp, tol float64) map[int64]float64 {
	// pageRankSparse is implemented according to "How Google Finds Your Needle
	// in the Web's Haystack".
	//
	// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k
	//
	// http://www.ams.org/samplings/feature-column/fcarc-pagerank

	nodes := graph.NodesOf(g.Nodes())
	indexOf := make(map[int64]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}

	m := make(rowCompressedMatrix, len(nodes))
	var dangling compressedRow
	df := damp / float64(len(nodes))
	for j, u := range nodes {
		to := graph.NodesOf(g.From(u.ID()))
		f := damp / float64(len(to))
		for _, v := range to {
			m.addTo(indexOf[v.ID()], j, f)
		}
		if len(to) == 0 {
			dangling.addTo(j, df)
		}
	}

	last := make([]float64, len(nodes))
	for i := range last {
		last[i] = 1
	}
	lastV := mat.NewVecDense(len(nodes), last)

	vec := make([]float64, len(nodes))
	var sum float64
	for i := range vec {
		r := rand.NormFloat64()
		sum += r
		vec[i] = r
	}
	f := 1 / sum
	for i := range vec {
		vec[i] *= f
	}
	v := mat.NewVecDense(len(nodes), vec)

	dt := (1 - damp) / float64(len(nodes))
	for {
		lastV, v = v, lastV

		m.mulVecUnitary(v, lastV)          // First term of the G matrix equation;
		with := dangling.dotUnitary(lastV) // Second term;
		away := onesDotUnitary(dt, lastV)  // Last term.

		floats.AddConst(with+away, v.RawVector().Data)
		if normDiff(vec, last) < tol {
			break
		}
	}

	ranks := make(map[int64]float64, len(nodes))
	for i, r := range v.RawVector().Data {
		ranks[nodes[i].ID()] = r
	}

	return ranks
}

// rowCompressedMatrix implements row-compressed
// matrix/vector multiplication.
type rowCompressedMatrix []compressedRow

// addTo adds the value v to the matrix element at (i,j). Repeated
// calls to addTo with the same column index will result in
// non-unique element representation.
func (m rowCompressedMatrix) addTo(i, j int, v float64) { m[i].addTo(j, v) }

// mulVecUnitary multiplies the receiver by the src vector, storing
// the result in dst. It assumes src and dst are the same length as m
// and that both have unitary vector increments.
func (m rowCompressedMatrix) mulVecUnitary(dst, src *mat.VecDense) {
	dMat := dst.RawVector().Data
	for i, r := range m {
		dMat[i] = r.dotUnitary(src)
	}
}

// compressedRow implements a simplified scatter-based Ddot.
type compressedRow []sparseElement

// addTo adds the value v to the vector element at j. Repeated
// calls to addTo with the same vector index will result in
// non-unique element representation.
func (r *compressedRow) addTo(j int, v float64) {
	*r = append(*r, sparseElement{index: j, value: v})
}

// dotUnitary performs a simplified scatter-based Ddot operations on
// v and the receiver. v must have a unitary vector increment.
func (r compressedRow) dotUnitary(v *mat.VecDense) float64 {
	var sum float64
	vec := v.RawVector().Data
	for _, e := range r {
		sum += vec[e.index] * e.value
	}
	return sum
}

// sparseElement is a sparse vector or matrix element.
type sparseElement struct {
	index int
	value float64
}

// onesDotUnitary performs the equivalent of a Ddot of v with
// a ones vector of equal length. v must have a unitary vector
// increment.
func onesDotUnitary(alpha float64, v *mat.VecDense) float64 {
	var sum float64
	for _, f := range v.RawVector().Data {
		sum += alpha * f
	}
	return sum
}

// normDiff returns the 2-norm of the difference between x and y.
// This is a cut down version of gonum/floats.Distance.
func normDiff(x, y []float64) float64 {
	var sum float64
	for i, v := range x {
		d := v - y[i]
		sum += d * d
	}
	return math.Sqrt(sum)
}