File: a_star.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (159 lines) | stat: -rw-r--r-- 3,897 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package path

import (
	"container/heap"

	"gonum.org/v1/gonum/graph"
	"gonum.org/v1/gonum/graph/internal/set"
	"gonum.org/v1/gonum/graph/traverse"
)

// AStar finds the A*-shortest path from s to t in g using the heuristic h. The path and
// its cost are returned in a Shortest along with paths and costs to all nodes explored
// during the search. The number of expanded nodes is also returned. This value may help
// with heuristic tuning.
//
// The path will be the shortest path if the heuristic is admissible. A heuristic is
// admissible if for any node, n, in the graph, the heuristic estimate of the cost of
// the path from n to t is less than or equal to the true cost of that path.
//
// If h is nil, AStar will use the g.HeuristicCost method if g implements HeuristicCoster,
// falling back to NullHeuristic otherwise. If the graph does not implement Weighted,
// UniformCost is used. AStar will panic if g has an A*-reachable negative edge weight.
func AStar(s, t graph.Node, g traverse.Graph, h Heuristic) (path Shortest, expanded int) {
	if g, ok := g.(graph.Graph); ok {
		if g.Node(s.ID()) == nil || g.Node(t.ID()) == nil {
			return Shortest{from: s}, 0
		}
	}
	var weight Weighting
	if wg, ok := g.(Weighted); ok {
		weight = wg.Weight
	} else {
		weight = UniformCost(g)
	}
	if h == nil {
		if g, ok := g.(HeuristicCoster); ok {
			h = g.HeuristicCost
		} else {
			h = NullHeuristic
		}
	}

	path = newShortestFrom(s, []graph.Node{s, t})
	tid := t.ID()

	visited := make(set.Ints[int64])
	open := &aStarQueue{indexOf: make(map[int64]int)}
	heap.Push(open, aStarNode{node: s, gscore: 0, fscore: h(s, t)})

	for open.Len() != 0 {
		u := heap.Pop(open).(aStarNode)
		uid := u.node.ID()
		i := path.indexOf[uid]
		expanded++

		if uid == tid {
			break
		}

		visited.Add(uid)
		to := g.From(u.node.ID())
		for to.Next() {
			v := to.Node()
			vid := v.ID()
			if visited.Has(vid) {
				continue
			}
			j, ok := path.indexOf[vid]
			if !ok {
				j = path.add(v)
			}

			w, ok := weight(u.node.ID(), vid)
			if !ok {
				panic("path: A* unexpected invalid weight")
			}
			if w < 0 {
				panic("path: A* negative edge weight")
			}
			g := u.gscore + w
			if n, ok := open.node(vid); !ok {
				path.set(j, g, i)
				heap.Push(open, aStarNode{node: v, gscore: g, fscore: g + h(v, t)})
			} else if g < n.gscore {
				path.set(j, g, i)
				open.update(vid, g, g+h(v, t))
			}
		}
	}

	return path, expanded
}

// NullHeuristic is an admissible, consistent heuristic that will not speed up computation.
func NullHeuristic(_, _ graph.Node) float64 {
	return 0
}

// aStarNode adds A* accounting to a graph.Node.
type aStarNode struct {
	node   graph.Node
	gscore float64
	fscore float64
}

// aStarQueue is an A* priority queue.
type aStarQueue struct {
	indexOf map[int64]int
	nodes   []aStarNode
}

func (q *aStarQueue) Less(i, j int) bool {
	return q.nodes[i].fscore < q.nodes[j].fscore
}

func (q *aStarQueue) Swap(i, j int) {
	q.indexOf[q.nodes[i].node.ID()] = j
	q.indexOf[q.nodes[j].node.ID()] = i
	q.nodes[i], q.nodes[j] = q.nodes[j], q.nodes[i]
}

func (q *aStarQueue) Len() int {
	return len(q.nodes)
}

func (q *aStarQueue) Push(x interface{}) {
	n := x.(aStarNode)
	q.indexOf[n.node.ID()] = len(q.nodes)
	q.nodes = append(q.nodes, n)
}

func (q *aStarQueue) Pop() interface{} {
	n := q.nodes[len(q.nodes)-1]
	q.nodes = q.nodes[:len(q.nodes)-1]
	delete(q.indexOf, n.node.ID())
	return n
}

func (q *aStarQueue) update(id int64, g, f float64) {
	i, ok := q.indexOf[id]
	if !ok {
		return
	}
	q.nodes[i].gscore = g
	q.nodes[i].fscore = f
	heap.Fix(q, i)
}

func (q *aStarQueue) node(id int64) (aStarNode, bool) {
	loc, ok := q.indexOf[id]
	if ok {
		return q.nodes[loc], true
	}
	return aStarNode{}, false
}