1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import (
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/linear"
"gonum.org/v1/gonum/graph/traverse"
)
// BellmanFordFrom returns a shortest-path tree for a shortest path from u to all nodes in
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
// does not implement Weighted, UniformCost is used.
//
// If g is a graph.Graph, all nodes of the graph will be stored in the shortest-path
// tree, otherwise only nodes reachable from u will be stored.
//
// The time complexity of BellmanFordFrom is O(|V|.|E|).
func BellmanFordFrom(u graph.Node, g traverse.Graph) (path Shortest, ok bool) {
if h, ok := g.(graph.Graph); ok {
if h.Node(u.ID()) == nil {
return Shortest{from: u}, true
}
path = newShortestFrom(u, graph.NodesOf(h.Nodes()))
} else {
if g.From(u.ID()) == graph.Empty {
return Shortest{from: u}, true
}
path = newShortestFrom(u, []graph.Node{u})
}
path.dist[path.indexOf[u.ID()]] = 0
path.negCosts = make(map[negEdge]float64)
var weight Weighting
if wg, ok := g.(Weighted); ok {
weight = wg.Weight
} else {
weight = UniformCost(g)
}
// Queue to keep track which nodes need to be relaxed.
// Only nodes whose vertex distance changed in the previous iterations
// need to be relaxed again.
queue := newBellmanFordQueue(path.indexOf)
queue.enqueue(u)
// TODO(kortschak): Consider adding further optimisations
// from http://arxiv.org/abs/1111.5414.
var loops int64
for queue.len() != 0 {
u := queue.dequeue()
uid := u.ID()
j := path.indexOf[uid]
to := g.From(uid)
for to.Next() {
v := to.Node()
vid := v.ID()
k, ok := path.indexOf[vid]
if !ok {
k = path.add(v)
}
w, ok := weight(uid, vid)
if !ok {
panic("bellman-ford: unexpected invalid weight")
}
joint := path.dist[j] + w
if joint < path.dist[k] {
path.set(k, joint, j)
if !queue.has(vid) {
queue.enqueue(v)
}
}
}
// The maximum number of edges in the relaxed subgraph is |V_r| * (|V_r|-1).
// If the queue-loop has more iterations than the maximum number of edges
// it indicates that we have a negative cycle.
maxEdges := int64(len(path.nodes)) * int64(len(path.nodes)-1)
if loops > maxEdges {
path.hasNegativeCycle = true
return path, false
}
loops++
}
return path, true
}
// BellmanFordAllFrom returns a shortest-path tree for shortest paths from u to all nodes in
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
// does not implement Weighted, UniformCost is used.
//
// If g is a graph.Graph, all nodes of the graph will be stored in the shortest-path
// tree, otherwise only nodes reachable from u will be stored.
//
// The time complexity of BellmanFordAllFrom is O(|V|.|E|).
func BellmanFordAllFrom(u graph.Node, g traverse.Graph) (path ShortestAlts, ok bool) {
if h, ok := g.(graph.Graph); ok {
if h.Node(u.ID()) == nil {
return ShortestAlts{from: u}, true
}
path = newShortestAltsFrom(u, graph.NodesOf(h.Nodes()))
} else {
if g.From(u.ID()) == graph.Empty {
return ShortestAlts{from: u}, true
}
path = newShortestAltsFrom(u, []graph.Node{u})
}
path.dist[path.indexOf[u.ID()]] = 0
path.negCosts = make(map[negEdge]float64)
var weight Weighting
if wg, ok := g.(Weighted); ok {
weight = wg.Weight
} else {
weight = UniformCost(g)
}
// Queue to keep track which nodes need to be relaxed.
// Only nodes whose vertex distance changed in the previous iterations
// need to be relaxed again.
queue := newBellmanFordQueue(path.indexOf)
queue.enqueue(u)
// TODO(kortschak): Consider adding further optimisations
// from http://arxiv.org/abs/1111.5414.
var loops int64
for queue.len() != 0 {
u := queue.dequeue()
uid := u.ID()
j := path.indexOf[uid]
for _, v := range graph.NodesOf(g.From(uid)) {
vid := v.ID()
k, ok := path.indexOf[vid]
if !ok {
k = path.add(v)
}
w, ok := weight(uid, vid)
if !ok {
panic("bellman-ford: unexpected invalid weight")
}
joint := path.dist[j] + w
if joint < path.dist[k] {
path.set(k, joint, j)
if !queue.has(vid) {
queue.enqueue(v)
}
} else if joint == path.dist[k] {
path.addPath(k, j)
}
}
// The maximum number of edges in the relaxed subgraph is |V_r| * (|V_r|-1).
// If the queue-loop has more iterations than the maximum number of edges
// it indicates that we have a negative cycle.
maxEdges := int64(len(path.nodes)) * int64(len(path.nodes)-1)
if loops > maxEdges {
path.hasNegativeCycle = true
return path, false
}
loops++
}
return path, true
}
// bellmanFordQueue is a queue for the Queue-based Bellman-Ford algorithm.
type bellmanFordQueue struct {
// queue holds the nodes which need to be relaxed.
queue linear.NodeQueue
// onQueue keeps track whether a node is on the queue or not.
onQueue []bool
// indexOf contains a mapping holding the id of a node with its index in the onQueue array.
indexOf map[int64]int
}
// enqueue adds a node to the bellmanFordQueue.
func (q *bellmanFordQueue) enqueue(n graph.Node) {
i, ok := q.indexOf[n.ID()]
switch {
case !ok:
panic("bellman-ford: unknown node")
case i < len(q.onQueue):
if q.onQueue[i] {
panic("bellman-ford: already queued")
}
case i == len(q.onQueue):
q.onQueue = append(q.onQueue, false)
case i < cap(q.onQueue):
q.onQueue = q.onQueue[:i+1]
default:
q.onQueue = append(q.onQueue, make([]bool, i-len(q.onQueue)+1)...)
}
q.onQueue[i] = true
q.queue.Enqueue(n)
}
// dequeue returns the first value of the bellmanFordQueue.
func (q *bellmanFordQueue) dequeue() graph.Node {
n := q.queue.Dequeue()
q.onQueue[q.indexOf[n.ID()]] = false
return n
}
// len returns the number of nodes in the bellmanFordQueue.
func (q *bellmanFordQueue) len() int { return q.queue.Len() }
// has returns whether a node with the given id is in the queue.
func (q bellmanFordQueue) has(id int64) bool {
idx, ok := q.indexOf[id]
if !ok || idx >= len(q.onQueue) {
return false
}
return q.onQueue[idx]
}
// newBellmanFordQueue creates a new bellmanFordQueue.
func newBellmanFordQueue(indexOf map[int64]int) bellmanFordQueue {
return bellmanFordQueue{
onQueue: make([]bool, len(indexOf)),
indexOf: indexOf,
}
}
|