File: limited.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (329 lines) | stat: -rw-r--r-- 8,382 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package testgraphs

import (
	"errors"
	"math"

	"gonum.org/v1/gonum/graph"
	"gonum.org/v1/gonum/graph/iterator"
	"gonum.org/v1/gonum/graph/simple"
)

// LimitedVisionGrid is a 2D grid planar undirected graph where the capacity
// to determine the presence of edges is dependent on the current and past
// positions on the grid. In the absence of information, the grid is
// optimistic.
type LimitedVisionGrid struct {
	Grid *Grid

	// Location is the current
	// location on the grid.
	Location graph.Node

	// VisionRadius specifies how far
	// away edges can be detected.
	VisionRadius float64

	// Known holds a store of known
	// nodes, if not nil.
	Known map[int64]bool
}

// MoveTo moves to the node n on the grid and returns a slice of newly seen and
// already known edges. MoveTo panics if n is nil.
func (l *LimitedVisionGrid) MoveTo(n graph.Node) (new, old []graph.Edge) {
	l.Location = n
	row, column := l.RowCol(n.ID())
	x := float64(column)
	y := float64(row)
	seen := make(map[[2]int64]bool)
	bound := int(l.VisionRadius + 0.5)
	for r := row - bound; r <= row+bound; r++ {
		for c := column - bound; c <= column+bound; c++ {
			u := l.NodeAt(r, c)
			if u == nil {
				continue
			}
			uid := u.ID()
			ux, uy := l.XY(uid)
			if math.Hypot(x-ux, y-uy) > l.VisionRadius {
				continue
			}
			for _, v := range l.allPossibleFrom(uid) {
				vid := v.ID()
				if seen[[2]int64{uid, vid}] {
					continue
				}
				seen[[2]int64{uid, vid}] = true

				vx, vy := l.XY(vid)
				if !l.Known[vid] && math.Hypot(x-vx, y-vy) > l.VisionRadius {
					continue
				}

				e := simple.Edge{F: u, T: v}
				if !l.Known[uid] || !l.Known[vid] {
					new = append(new, e)
				} else {
					old = append(old, e)
				}
			}
		}
	}

	if l.Known != nil {
		for r := row - bound; r <= row+bound; r++ {
			for c := column - bound; c <= column+bound; c++ {
				u := l.NodeAt(r, c)
				if u == nil {
					continue
				}
				uid := u.ID()
				ux, uy := l.XY(uid)
				if math.Hypot(x-ux, y-uy) > l.VisionRadius {
					continue
				}
				for _, v := range l.allPossibleFrom(uid) {
					vid := v.ID()
					vx, vy := l.XY(vid)
					if math.Hypot(x-vx, y-vy) > l.VisionRadius {
						continue
					}
					l.Known[vid] = true
				}
				l.Known[uid] = true
			}
		}

	}

	return new, old
}

// allPossibleFrom returns all the nodes possibly reachable from u.
func (l *LimitedVisionGrid) allPossibleFrom(uid int64) []graph.Node {
	if !l.has(uid) {
		return nil
	}
	nr, nc := l.RowCol(uid)
	var to []graph.Node
	for r := nr - 1; r <= nr+1; r++ {
		for c := nc - 1; c <= nc+1; c++ {
			v := l.NodeAt(r, c)
			if v == nil || uid == v.ID() {
				continue
			}
			ur, uc := l.RowCol(uid)
			vr, vc := l.RowCol(v.ID())
			if abs(ur-vr) > 1 || abs(uc-vc) > 1 {
				continue
			}
			if !l.Grid.AllowDiagonal && ur != vr && uc != vc {
				continue
			}
			to = append(to, v)
		}
	}
	return to
}

// RowCol returns the row and column of the id. RowCol will panic if the
// node id is outside the range of the grid.
func (l *LimitedVisionGrid) RowCol(id int64) (r, c int) {
	return l.Grid.RowCol(id)
}

// XY returns the cartesian coordinates of n. If n is not a node
// in the grid, (NaN, NaN) is returned.
func (l *LimitedVisionGrid) XY(id int64) (x, y float64) {
	if !l.has(id) {
		return math.NaN(), math.NaN()
	}
	r, c := l.RowCol(id)
	return float64(c), float64(r)
}

// Nodes returns all the nodes in the grid.
func (l *LimitedVisionGrid) Nodes() graph.Nodes {
	nodes := make([]graph.Node, 0, len(l.Grid.open))
	for id := range l.Grid.open {
		nodes = append(nodes, simple.Node(id))
	}
	return iterator.NewOrderedNodes(nodes)
}

// NodeAt returns the node at (r, c). The returned node may be open or closed.
func (l *LimitedVisionGrid) NodeAt(r, c int) graph.Node {
	return l.Grid.NodeAt(r, c)
}

// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (l *LimitedVisionGrid) Node(id int64) graph.Node {
	if l.has(id) {
		return simple.Node(id)
	}
	return nil
}

// has returns whether the node with the given ID is a node in the grid.
func (l *LimitedVisionGrid) has(id int64) bool {
	return 0 <= id && id < int64(len(l.Grid.open))
}

// From returns nodes that are optimistically reachable from u.
func (l *LimitedVisionGrid) From(uid int64) graph.Nodes {
	if !l.has(uid) {
		return graph.Empty
	}

	nr, nc := l.RowCol(uid)
	var to []graph.Node
	for r := nr - 1; r <= nr+1; r++ {
		for c := nc - 1; c <= nc+1; c++ {
			if v := l.NodeAt(r, c); v != nil && l.HasEdgeBetween(uid, v.ID()) {
				to = append(to, v)
			}
		}
	}
	if len(to) == 0 {
		return graph.Empty
	}
	return iterator.NewOrderedNodes(to)
}

// HasEdgeBetween optimistically returns whether an edge is exists between u and v.
func (l *LimitedVisionGrid) HasEdgeBetween(uid, vid int64) bool {
	if uid == vid {
		return false
	}
	ur, uc := l.RowCol(uid)
	vr, vc := l.RowCol(vid)
	if abs(ur-vr) > 1 || abs(uc-vc) > 1 {
		return false
	}
	if !l.Grid.AllowDiagonal && ur != vr && uc != vc {
		return false
	}

	x, y := l.XY(l.Location.ID())
	ux, uy := l.XY(uid)
	vx, vy := l.XY(vid)
	uKnown := l.Known[uid] || math.Hypot(x-ux, y-uy) <= l.VisionRadius
	vKnown := l.Known[vid] || math.Hypot(x-vx, y-vy) <= l.VisionRadius

	switch {
	case uKnown && vKnown:
		return l.Grid.HasEdgeBetween(uid, vid)
	case uKnown:
		return l.Grid.HasOpen(uid)
	case vKnown:
		return l.Grid.HasOpen(vid)
	default:
		return true
	}
}

// Edge optimistically returns the edge from u to v.
func (l *LimitedVisionGrid) Edge(uid, vid int64) graph.Edge {
	return l.WeightedEdgeBetween(uid, vid)
}

// WeightedEdge optimistically returns the weighted edge from u to v.
func (l *LimitedVisionGrid) WeightedEdge(uid, vid int64) graph.WeightedEdge {
	return l.WeightedEdgeBetween(uid, vid)
}

// EdgeBetween optimistically returns the edge between u and v.
func (l *LimitedVisionGrid) EdgeBetween(uid, vid int64) graph.Edge {
	return l.WeightedEdgeBetween(uid, vid)
}

// WeightedEdgeBetween optimistically returns the weighted edge between u and v.
func (l *LimitedVisionGrid) WeightedEdgeBetween(uid, vid int64) graph.WeightedEdge {
	if l.HasEdgeBetween(uid, vid) {
		if !l.Grid.AllowDiagonal || l.Grid.UnitEdgeWeight {
			return simple.WeightedEdge{F: simple.Node(uid), T: simple.Node(vid), W: 1}
		}
		ux, uy := l.XY(uid)
		vx, vy := l.XY(vid)
		return simple.WeightedEdge{F: simple.Node(uid), T: simple.Node(vid), W: math.Hypot(ux-vx, uy-vy)}
	}
	return nil
}

// Weight returns the weight of the given edge.
func (l *LimitedVisionGrid) Weight(xid, yid int64) (w float64, ok bool) {
	if xid == yid {
		return 0, true
	}
	if !l.HasEdgeBetween(xid, yid) {
		return math.Inf(1), false
	}
	if e := l.EdgeBetween(xid, yid); e != nil {
		if !l.Grid.AllowDiagonal || l.Grid.UnitEdgeWeight {
			return 1, true
		}
		ux, uy := l.XY(e.From().ID())
		vx, vy := l.XY(e.To().ID())
		return math.Hypot(ux-vx, uy-vy), true

	}
	return math.Inf(1), true
}

// String returns a string representation of the grid.
func (l *LimitedVisionGrid) String() string {
	b, _ := l.Render(nil)
	return string(b)
}

// Render returns a text representation of the graph
// with the given path included. If the path is not a path
// in the grid Render returns a non-nil error and the
// path up to that point.
func (l *LimitedVisionGrid) Render(path []graph.Node) ([]byte, error) {
	rows, cols := l.Grid.Dims()
	b := make([]byte, rows*(cols+1)-1)
	for r := 0; r < rows; r++ {
		for c := 0; c < cols; c++ {
			if !l.Known[int64(r*cols+c)] {
				b[r*(cols+1)+c] = Unknown
			} else if l.Grid.open[r*cols+c] {
				b[r*(cols+1)+c] = Open
			} else {
				b[r*(cols+1)+c] = Closed
			}
		}
		if r < rows-1 {
			b[r*(cols+1)+cols] = '\n'
		}
	}

	// We don't use topo.IsPathIn at the outset because we
	// want to draw as much as possible before failing.
	for i, n := range path {
		id := n.ID()
		if !l.has(id) || (i != 0 && !l.HasEdgeBetween(path[i-1].ID(), id)) {
			if 0 <= id && id < int64(len(l.Grid.open)) {
				r, c := l.RowCol(id)
				b[r*(cols+1)+c] = '!'
			}
			return b, errors.New("grid: not a path in graph")
		}
		r, c := l.RowCol(id)
		switch i {
		case len(path) - 1:
			b[r*(cols+1)+c] = 'G'
		case 0:
			b[r*(cols+1)+c] = 'S'
		default:
			b[r*(cols+1)+c] = 'o'
		}
	}
	return b, nil
}