1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import (
"math"
"slices"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/set"
"gonum.org/v1/gonum/mat"
)
// Shortest is a shortest-path tree created by the BellmanFordFrom, DijkstraFrom
// or AStar single-source shortest path functions.
type Shortest struct {
// from holds the source node given to
// the function that returned the
// Shortest value.
from graph.Node
// nodes hold the nodes of the analysed
// graph.
nodes []graph.Node
// indexOf contains a mapping between
// the id-dense representation of the
// graph and the potentially id-sparse
// nodes held in nodes.
indexOf map[int64]int
// dist and next represent the shortest
// paths between nodes.
//
// Indices into dist and next are
// mapped through indexOf.
//
// dist contains the distances
// from the from node for each
// node in the graph.
dist []float64
// next contains the shortest-path
// tree of the graph. The index is a
// linear mapping of to-dense-id.
next []int
// hasNegativeCycle indicates
// whether the Shortest includes
// a negative cycle. This should
// be set by the function that
// returned the Shortest value.
hasNegativeCycle bool
// negCosts holds negative costs
// between pairs of nodes to report
// negative cycles.
// negCosts must be initialised by
// routines that can handle negative
// edge weights.
negCosts map[negEdge]float64
}
// newShortestFrom returns a shortest path tree for paths from u
// initialised with the given nodes. The nodes held by the returned
// Shortest may be lazily added.
func newShortestFrom(u graph.Node, nodes []graph.Node) Shortest {
indexOf := make(map[int64]int, len(nodes))
uid := u.ID()
for i, n := range nodes {
indexOf[n.ID()] = i
if n.ID() == uid {
u = n
}
}
p := Shortest{
from: u,
nodes: nodes,
indexOf: indexOf,
dist: make([]float64, len(nodes)),
next: make([]int, len(nodes)),
}
for i := range nodes {
p.dist[i] = math.Inf(1)
p.next[i] = -1
}
p.dist[indexOf[uid]] = 0
return p
}
// add adds a node to the Shortest, initialising its stored index and returning, and
// setting the distance and position as unconnected. add will panic if the node is
// already present.
func (p *Shortest) add(u graph.Node) int {
uid := u.ID()
if _, exists := p.indexOf[uid]; exists {
panic("shortest: adding existing node")
}
idx := len(p.nodes)
p.indexOf[uid] = idx
p.nodes = append(p.nodes, u)
p.dist = append(p.dist, math.Inf(1))
p.next = append(p.next, -1)
return idx
}
// set sets the weight of the path from the node in p.nodes indexed by mid to the node
// indexed by to.
func (p Shortest) set(to int, weight float64, mid int) {
p.dist[to] = weight
p.next[to] = mid
if weight < 0 {
e := negEdge{from: mid, to: to}
c, ok := p.negCosts[e]
if !ok {
p.negCosts[e] = weight
} else if weight < c {
// The only ways that we can have a new weight that is
// lower than the previous weight is if either the edge
// has already been traversed in a negative cycle, or
// the edge is reachable from a negative cycle.
// Either way the reported path is returned with a
// negative infinite path weight.
p.negCosts[e] = math.Inf(-1)
}
}
}
// From returns the starting node of the paths held by the Shortest.
func (p Shortest) From() graph.Node { return p.from }
// WeightTo returns the weight of the minimum path to v. If the path to v includes
// a negative cycle, the returned weight will not reflect the true path weight.
func (p Shortest) WeightTo(vid int64) float64 {
to, toOK := p.indexOf[vid]
if !toOK {
return math.Inf(1)
}
return p.dist[to]
}
// To returns a shortest path to v and the weight of the path. If the path
// to v includes a negative cycle, one pass through the cycle will be included
// in path, but any path leading into the negative cycle will be lost, and
// weight will be returned as -Inf.
func (p Shortest) To(vid int64) (path []graph.Node, weight float64) {
to, toOK := p.indexOf[vid]
if !toOK || math.IsInf(p.dist[to], 1) {
return nil, math.Inf(1)
}
from := p.indexOf[p.from.ID()]
path = []graph.Node{p.nodes[to]}
weight = math.Inf(1)
if p.hasNegativeCycle {
seen := make(set.Ints[int])
seen.Add(from)
for to != from {
next := p.next[to]
if math.IsInf(p.negCosts[negEdge{from: next, to: to}], -1) {
weight = math.Inf(-1)
}
if seen.Has(to) {
break
}
seen.Add(to)
path = append(path, p.nodes[next])
to = next
}
} else {
n := len(p.nodes)
for to != from {
to = p.next[to]
path = append(path, p.nodes[to])
if n < 0 {
panic("path: unexpected negative cycle")
}
n--
}
}
slices.Reverse(path)
return path, math.Min(weight, p.dist[p.indexOf[vid]])
}
// ShortestAlts is a shortest-path tree created by the BellmanFordAllFrom or DijkstraAllFrom
// single-source shortest path functions.
type ShortestAlts struct {
// from holds the source node given to
// the function that returned the
// ShortestAlts value.
from graph.Node
// nodes hold the nodes of the analysed
// graph.
nodes []graph.Node
// indexOf contains a mapping between
// the id-dense representation of the
// graph and the potentially id-sparse
// nodes held in nodes.
indexOf map[int64]int
// dist and next represent the shortest
// paths between nodes.
//
// Indices into dist and next are
// mapped through indexOf.
//
// dist contains the distances
// from the from node for each
// node in the graph.
dist []float64
// next contains the shortest-path
// tree of the graph. The index is a
// linear mapping of to-dense-id.
next [][]int
// hasNegativeCycle indicates
// whether the ShortestAlts includes
// a negative cycle. This should
// be set by the function that
// returned the ShortestAlts value.
hasNegativeCycle bool
// negCosts holds negative costs
// between pairs of nodes to report
// negative cycles.
// negCosts must be initialised by
// routines that can handle negative
// edge weights.
negCosts map[negEdge]float64
}
// newShortestAltsFrom returns a shortest path tree for all paths from u
// initialised with the given nodes. The nodes held by the returned
// Shortest may be lazily added.
func newShortestAltsFrom(u graph.Node, nodes []graph.Node) ShortestAlts {
indexOf := make(map[int64]int, len(nodes))
uid := u.ID()
for i, n := range nodes {
indexOf[n.ID()] = i
if n.ID() == uid {
u = n
}
}
p := ShortestAlts{
from: u,
nodes: nodes,
indexOf: indexOf,
dist: make([]float64, len(nodes)),
next: make([][]int, len(nodes)),
}
for i := range nodes {
p.dist[i] = math.Inf(1)
p.next[i] = nil
}
p.dist[indexOf[uid]] = 0
return p
}
// add adds a node to the ShortestAlts, initialising its stored index and returning, and
// setting the distance and position as unconnected. add will panic if the node is
// already present.
func (p *ShortestAlts) add(u graph.Node) int {
uid := u.ID()
if _, exists := p.indexOf[uid]; exists {
panic("shortest: adding existing node")
}
idx := len(p.nodes)
p.indexOf[uid] = idx
p.nodes = append(p.nodes, u)
p.dist = append(p.dist, math.Inf(1))
p.next = append(p.next, nil)
return idx
}
// set sets the weight of the path from the node in p.nodes indexed by mid to the node
// indexed by to.
func (p ShortestAlts) set(to int, weight float64, mid int) {
p.dist[to] = weight
p.next[to] = []int{mid}
if weight < 0 {
e := negEdge{from: mid, to: to}
c, ok := p.negCosts[e]
if !ok {
p.negCosts[e] = weight
} else if weight < c {
// The only ways that we can have a new weight that is
// lower than the previous weight is if either the edge
// has already been traversed in a negative cycle, or
// the edge is reachable from a negative cycle.
// Either way the reported path is returned with a
// negative infinite path weight.
p.negCosts[e] = math.Inf(-1)
}
}
}
// addPath adds a new path from the node in p.nodes indexed by mid to the node indexed
// by to. The weight of the path is expected to be the same as already existing paths
// between these nodes, but no check is made for this.
func (p ShortestAlts) addPath(to, mid int) {
// These are likely to be rare, so just loop over collisions.
for _, v := range p.next[to] {
if mid == v {
return
}
}
p.next[to] = append(p.next[to], mid)
}
// From returns the starting node of the paths held by the ShortestAlts.
func (p ShortestAlts) From() graph.Node { return p.from }
// WeightTo returns the weight of the minimum path to v. If the path to v includes
// a negative cycle, the returned weight will not reflect the true path weight.
func (p ShortestAlts) WeightTo(vid int64) float64 {
to, toOK := p.indexOf[vid]
if !toOK {
return math.Inf(1)
}
return p.dist[to]
}
// To returns a shortest path to v and the weight of the path. If more than
// one shortest path exists between u and v, a randomly chosen path will be
// returned and unique is returned false. If a cycle with zero weight exists
// in the path, it will not be included, but unique will be returned false.
// If the path to v includes a negative cycle, one pass through the cycle will
// be included in path, but any path leading into the negative cycle will be
// lost, and weight will be returned as -Inf.
func (p ShortestAlts) To(vid int64) (path []graph.Node, weight float64, unique bool) {
to, toOK := p.indexOf[vid]
if !toOK || math.IsInf(p.dist[to], 1) {
return nil, math.Inf(1), false
}
from := p.indexOf[p.from.ID()]
unique = true
path = []graph.Node{p.nodes[to]}
if p.hasNegativeCycle {
weight = math.Inf(1)
seen := make(set.Ints[int])
seen.Add(from)
for to != from {
c := p.next[to]
var next int
if len(c) != 1 {
unique = false
next = c[rand.Intn(len(c))]
} else {
next = c[0]
}
if math.IsInf(p.negCosts[negEdge{from: next, to: to}], -1) {
weight = math.Inf(-1)
unique = false
}
if seen.Has(to) {
break
}
seen.Add(to)
path = append(path, p.nodes[next])
to = next
}
weight = math.Min(weight, p.dist[p.indexOf[vid]])
} else {
seen := make([]int, len(p.nodes))
for i := range seen {
seen[i] = -1
}
seen[to] = 0
var next int
for from != to {
c := p.next[to]
if len(c) != 1 {
unique = false
next = c[rand.Intn(len(c))]
} else {
next = c[0]
}
if seen[next] >= 0 {
path = path[:seen[next]]
}
seen[next] = len(path)
path = append(path, p.nodes[next])
to = next
}
weight = p.dist[p.indexOf[vid]]
}
slices.Reverse(path)
return path, weight, unique
}
// AllTo returns all shortest paths to v and the weight of the paths. Paths
// containing zero-weight cycles are not returned. If a negative cycle exists between
// u and v, paths is returned nil and weight is returned as -Inf.
func (p ShortestAlts) AllTo(vid int64) (paths [][]graph.Node, weight float64) {
from := p.indexOf[p.from.ID()]
to, toOK := p.indexOf[vid]
if !toOK || len(p.next[to]) == 0 {
if p.from.ID() == vid {
return [][]graph.Node{{p.nodes[from]}}, 0
}
return nil, math.Inf(1)
}
_, weight, unique := p.To(vid)
if math.IsInf(weight, -1) && !unique {
return nil, math.Inf(-1)
}
seen := make([]bool, len(p.nodes))
p.allTo(from, to, seen, []graph.Node{p.nodes[to]}, func(path []graph.Node) {
paths = append(paths, append([]graph.Node(nil), path...))
})
weight = p.dist[to]
return paths, weight
}
// AllToFunc calls fn on all shortest paths to v. Paths containing zero-weight
// cycles are not considered. If a negative cycle exists between u and v, no
// path is considered. The fn closure must not retain the path parameter.
func (p ShortestAlts) AllToFunc(vid int64, fn func(path []graph.Node)) {
from := p.indexOf[p.from.ID()]
to, toOK := p.indexOf[vid]
if !toOK || len(p.next[to]) == 0 {
if p.from.ID() == vid {
fn([]graph.Node{p.nodes[from]})
}
return
}
_, weight, unique := p.To(vid)
if math.IsInf(weight, -1) && !unique {
return
}
seen := make([]bool, len(p.nodes))
p.allTo(from, to, seen, []graph.Node{p.nodes[to]}, fn)
}
// allTo recursively constructs a slice of paths extending from the node
// indexed into p.nodes by from to the node indexed by to. len(seen) must match
// the number of nodes held by the receiver. The path parameter is the current
// working path and the results passed to fn.
func (p ShortestAlts) allTo(from, to int, seen []bool, path []graph.Node, fn func(path []graph.Node)) {
seen[to] = true
if from == to {
if path == nil {
return
}
slices.Reverse(path)
fn(path)
slices.Reverse(path)
return
}
first := true
var seenWork []bool
for _, to := range p.next[to] {
if seen[to] {
continue
}
if first {
p := make([]graph.Node, len(path), len(path)+1)
copy(p, path)
path = p
seenWork = make([]bool, len(seen))
first = false
}
copy(seenWork, seen)
p.allTo(from, to, seenWork, append(path, p.nodes[to]), fn)
}
}
// negEdge is a key into the negative costs map used by Shortest and ShortestAlts.
type negEdge struct{ from, to int }
// AllShortest is a shortest-path tree created by the DijkstraAllPaths, FloydWarshall
// or JohnsonAllPaths all-pairs shortest paths functions.
type AllShortest struct {
// nodes hold the nodes of the analysed
// graph.
nodes []graph.Node
// indexOf contains a mapping between
// the id-dense representation of the
// graph and the potentially id-sparse
// nodes held in nodes.
indexOf map[int64]int
// dist, next and forward represent
// the shortest paths between nodes.
//
// Indices into dist and next are
// mapped through indexOf.
//
// dist contains the pairwise
// distances between nodes.
//
// Internally, edges on negative
// cycles are given a special NaN
// weight, NaN(0xdefaced).
// This is returned to the user as
// -Inf. This approach allows -Inf
// weight edges on simple paths to be
// distinguished from -Inf weight
// paths that contain negative cycles.
// The distinction is visible to the
// user through whether then path
// returned with a -Inf weight is
// nil or contains a set of nodes.
dist *mat.Dense
// next contains the shortest-path
// tree of the graph. The first index
// is a linear mapping of from-dense-id
// and to-dense-id, to-major with a
// stride equal to len(nodes); the
// slice indexed to is the list of
// intermediates leading from the 'from'
// node to the 'to' node represented
// by dense id.
// The interpretation of next is
// dependent on the state of forward.
next [][]int
// forward indicates the direction of
// path reconstruction. Forward
// reconstruction is used for Floyd-
// Warshall and reverse is used for
// Dijkstra.
forward bool
}
var (
// defaced is NaN(0xdefaced) used as a marker for -Inf weight edges
// within paths containing negative cycles. Routines marking these
// edges should use this value.
defaced = scalar.NaNWith(0xdefaced)
// defacedBits is the bit pattern we look for in AllShortest to
// identify the edges.
defacedBits = math.Float64bits(defaced)
)
// newAllShortest returns an all-pairs shortest path forest for paths with the
// given nodes. The forward flag indicates whether the path reconstruction is
// performed in the forward (Floyd-Warshall) or reverse (Dijkstra/Johnson's) order.
func newAllShortest(nodes []graph.Node, forward bool) AllShortest {
if len(nodes) == 0 {
return AllShortest{}
}
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
indexOf[n.ID()] = i
}
dist := make([]float64, len(nodes)*len(nodes))
for i := range dist {
dist[i] = math.Inf(1)
}
return AllShortest{
nodes: nodes,
indexOf: indexOf,
dist: mat.NewDense(len(nodes), len(nodes), dist),
next: make([][]int, len(nodes)*len(nodes)),
forward: forward,
}
}
// at returns a slice of node indexes into p.nodes for nodes that are mid points
// between nodes indexed by from and to.
func (p AllShortest) at(from, to int) (mid []int) {
return p.next[from+to*len(p.nodes)]
}
// set sets the weights of paths between node indexes into p.nodes for from and to
// passing through the nodes indexed by mid.
func (p AllShortest) set(from, to int, weight float64, mid ...int) {
p.dist.Set(from, to, weight)
p.next[from+to*len(p.nodes)] = append(p.next[from+to*len(p.nodes)][:0], mid...)
}
// add adds paths between node indexed in p.nodes by from and to passing through
// the nodes indexed by mid.
func (p AllShortest) add(from, to int, mid ...int) {
loop: // These are likely to be rare, so just loop over collisions.
for _, k := range mid {
for _, v := range p.next[from+to*len(p.nodes)] {
if k == v {
continue loop
}
}
p.next[from+to*len(p.nodes)] = append(p.next[from+to*len(p.nodes)], k)
}
}
// Weight returns the weight of the minimum path between u and v.
func (p AllShortest) Weight(uid, vid int64) float64 {
from, fromOK := p.indexOf[uid]
to, toOK := p.indexOf[vid]
if !fromOK || !toOK {
return math.Inf(1)
}
w := p.dist.At(from, to)
if math.Float64bits(w) == defacedBits {
return math.Inf(-1)
}
return w
}
// Between returns a shortest path from u to v and the weight of the path. If more than
// one shortest path exists between u and v, a randomly chosen path will be returned and
// unique is returned false. If a cycle with zero weight exists in the path, it will not
// be included, but unique will be returned false. If a negative cycle exists on the path
// from u to v, path will be returned nil, weight will be -Inf and unique will be false.
func (p AllShortest) Between(uid, vid int64) (path []graph.Node, weight float64, unique bool) {
from, fromOK := p.indexOf[uid]
to, toOK := p.indexOf[vid]
if !fromOK || !toOK || len(p.at(from, to)) == 0 {
if uid == vid {
if !fromOK {
return []graph.Node{node(uid)}, 0, true
}
return []graph.Node{p.nodes[from]}, 0, true
}
return nil, math.Inf(1), false
}
weight = p.dist.At(from, to)
if math.Float64bits(weight) == defacedBits {
return nil, math.Inf(-1), false
}
seen := make([]int, len(p.nodes))
for i := range seen {
seen[i] = -1
}
var n graph.Node
if p.forward {
n = p.nodes[from]
seen[from] = 0
} else {
n = p.nodes[to]
seen[to] = 0
}
path = []graph.Node{n}
unique = true
var next int
for from != to {
c := p.at(from, to)
if len(c) != 1 {
unique = false
next = c[rand.Intn(len(c))]
} else {
next = c[0]
}
if seen[next] >= 0 {
path = path[:seen[next]]
}
seen[next] = len(path)
path = append(path, p.nodes[next])
if p.forward {
from = next
} else {
to = next
}
}
if !p.forward {
slices.Reverse(path)
}
return path, weight, unique
}
// AllBetween returns all shortest paths from u to v and the weight of the paths. Paths
// containing zero-weight cycles are not returned. If a negative cycle exists between
// u and v, paths is returned nil and weight is returned as -Inf.
func (p AllShortest) AllBetween(uid, vid int64) (paths [][]graph.Node, weight float64) {
from, fromOK := p.indexOf[uid]
to, toOK := p.indexOf[vid]
if !fromOK || !toOK || len(p.at(from, to)) == 0 {
if uid == vid {
if !fromOK {
return [][]graph.Node{{node(uid)}}, 0
}
return [][]graph.Node{{p.nodes[from]}}, 0
}
return nil, math.Inf(1)
}
weight = p.dist.At(from, to)
if math.Float64bits(weight) == defacedBits {
return nil, math.Inf(-1)
}
var n graph.Node
if p.forward {
n = p.nodes[from]
} else {
n = p.nodes[to]
}
seen := make([]bool, len(p.nodes))
p.allBetween(from, to, seen, []graph.Node{n}, func(path []graph.Node) {
paths = append(paths, append([]graph.Node(nil), path...))
})
return paths, weight
}
// AllBetweenFunc calls fn on all shortest paths from u to v. Paths containing
// zero-weight cycles are not considered. If a negative cycle exists between u
// and v, no path is considered. The fn closure must not retain the path
// parameter.
func (p AllShortest) AllBetweenFunc(uid, vid int64, fn func(path []graph.Node)) {
from, fromOK := p.indexOf[uid]
to, toOK := p.indexOf[vid]
if !fromOK || !toOK || len(p.at(from, to)) == 0 {
if uid == vid {
if !fromOK {
fn([]graph.Node{node(uid)})
return
}
fn([]graph.Node{p.nodes[from]})
return
}
return
}
if math.Float64bits(p.dist.At(from, to)) == defacedBits {
return
}
var n graph.Node
if p.forward {
n = p.nodes[from]
} else {
n = p.nodes[to]
}
seen := make([]bool, len(p.nodes))
p.allBetween(from, to, seen, []graph.Node{n}, fn)
}
// allBetween recursively constructs a set of paths extending from the node
// indexed into p.nodes by from to the node indexed by to. len(seen) must match
// the number of nodes held by the receiver. The path parameter is the current
// working path and the results passed to fn.
func (p AllShortest) allBetween(from, to int, seen []bool, path []graph.Node, fn func([]graph.Node)) {
if p.forward {
seen[from] = true
} else {
seen[to] = true
}
if from == to {
if path == nil {
return
}
if !p.forward {
slices.Reverse(path)
}
fn(path)
if !p.forward {
slices.Reverse(path)
}
return
}
first := true
var seenWork []bool
for _, n := range p.at(from, to) {
if seen[n] {
continue
}
if first {
p := make([]graph.Node, len(path), len(path)+1)
copy(p, path)
path = p
seenWork = make([]bool, len(seen))
first = false
}
if p.forward {
from = n
} else {
to = n
}
copy(seenWork, seen)
p.allBetween(from, to, seenWork, append(path, p.nodes[n]), fn)
}
}
type node int64
func (n node) ID() int64 { return int64(n) }
|