1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import (
"fmt"
"math"
"reflect"
"slices"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/graphs/gen"
"gonum.org/v1/gonum/graph/simple"
"gonum.org/v1/gonum/internal/order"
)
var shortestTests = []struct {
n, d int
p float64
seed uint64
}{
{n: 100, d: 2, p: 0.5, seed: 1},
{n: 200, d: 2, p: 0.5, seed: 1},
{n: 100, d: 4, p: 0.25, seed: 1},
{n: 200, d: 4, p: 0.25, seed: 1},
{n: 100, d: 16, p: 0.1, seed: 1},
{n: 200, d: 16, p: 0.1, seed: 1},
}
func TestShortestAlts(t *testing.T) {
for _, test := range shortestTests {
t.Run(fmt.Sprintf("AllTo_%d×%d|%v", test.n, test.d, test.p), func(t *testing.T) {
g := simple.NewDirectedGraph()
gen.SmallWorldsBB(g, test.n, test.d, test.p, rand.New(rand.NewSource(test.seed)))
all := allShortest(DijkstraAllPaths(g))
for uid := int64(0); uid < int64(test.n); uid++ {
p := DijkstraAllFrom(g.Node(uid), g)
for vid := int64(0); vid < int64(test.n); vid++ {
got, gotW := p.AllTo(vid)
want, wantW := all.AllBetween(uid, vid)
if gotW != wantW {
t.Errorf("mismatched weight: got:%f want:%f", gotW, wantW)
continue
}
var gotPaths [][]int64
if len(got) != 0 {
gotPaths = make([][]int64, len(got))
}
for i, p := range got {
for _, v := range p {
gotPaths[i] = append(gotPaths[i], v.ID())
}
}
order.BySliceValues(gotPaths)
var wantPaths [][]int64
if len(want) != 0 {
wantPaths = make([][]int64, len(want))
}
for i, p := range want {
for _, v := range p {
wantPaths[i] = append(wantPaths[i], v.ID())
}
}
order.BySliceValues(wantPaths)
if !reflect.DeepEqual(gotPaths, wantPaths) {
t.Errorf("unexpected shortest paths %d --> %d:\ngot: %v\nwant:%v",
uid, vid, gotPaths, wantPaths)
}
}
}
})
}
}
func TestAllShortest(t *testing.T) {
for _, test := range shortestTests {
t.Run(fmt.Sprintf("AllBetween_%d×%d|%v", test.n, test.d, test.p), func(t *testing.T) {
g := simple.NewDirectedGraph()
gen.SmallWorldsBB(g, test.n, test.d, test.p, rand.New(rand.NewSource(test.seed)))
p := DijkstraAllPaths(g)
for uid := int64(0); uid < int64(test.n); uid++ {
for vid := int64(0); vid < int64(test.n); vid++ {
got, gotW := p.AllBetween(uid, vid)
want, wantW := allShortest(p).AllBetween(uid, vid) // Compare to naive.
if gotW != wantW {
t.Errorf("mismatched weight: got:%f want:%f", gotW, wantW)
continue
}
var gotPaths [][]int64
if len(got) != 0 {
gotPaths = make([][]int64, len(got))
}
for i, p := range got {
for _, v := range p {
gotPaths[i] = append(gotPaths[i], v.ID())
}
}
order.BySliceValues(gotPaths)
var wantPaths [][]int64
if len(want) != 0 {
wantPaths = make([][]int64, len(want))
}
for i, p := range want {
for _, v := range p {
wantPaths[i] = append(wantPaths[i], v.ID())
}
}
order.BySliceValues(wantPaths)
if !reflect.DeepEqual(gotPaths, wantPaths) {
t.Errorf("unexpected shortest paths %d --> %d:\ngot: %v\nwant:%v",
uid, vid, gotPaths, wantPaths)
}
}
}
})
}
}
// allShortest implements an allocation-naive AllBetween.
type allShortest AllShortest
// at returns a slice of node indexes into p.nodes for nodes that are mid points
// between nodes indexed by from and to.
func (p allShortest) at(from, to int) (mid []int) {
return p.next[from+to*len(p.nodes)]
}
// AllBetween returns all shortest paths from u to v and the weight of the paths. Paths
// containing zero-weight cycles are not returned. If a negative cycle exists between
// u and v, paths is returned nil and weight is returned as -Inf.
func (p allShortest) AllBetween(uid, vid int64) (paths [][]graph.Node, weight float64) {
from, fromOK := p.indexOf[uid]
to, toOK := p.indexOf[vid]
if !fromOK || !toOK || len(p.at(from, to)) == 0 {
if uid == vid {
if !fromOK {
return [][]graph.Node{{node(uid)}}, 0
}
return [][]graph.Node{{p.nodes[from]}}, 0
}
return nil, math.Inf(1)
}
weight = p.dist.At(from, to)
if math.Float64bits(weight) == defacedBits {
return nil, math.Inf(-1)
}
var n graph.Node
if p.forward {
n = p.nodes[from]
} else {
n = p.nodes[to]
}
seen := make([]bool, len(p.nodes))
paths = p.allBetween(from, to, seen, []graph.Node{n}, nil)
return paths, weight
}
// allBetween recursively constructs a slice of paths extending from the node
// indexed into p.nodes by from to the node indexed by to. len(seen) must match
// the number of nodes held by the receiver. The path parameter is the current
// working path and the results are written into paths.
func (p allShortest) allBetween(from, to int, seen []bool, path []graph.Node, paths [][]graph.Node) [][]graph.Node {
if p.forward {
seen[from] = true
} else {
seen[to] = true
}
if from == to {
if path == nil {
return paths
}
if !p.forward {
slices.Reverse(path)
}
return append(paths, path)
}
first := true
for _, n := range p.at(from, to) {
if seen[n] {
continue
}
if first {
path = append([]graph.Node(nil), path...)
first = false
}
if p.forward {
from = n
} else {
to = n
}
path = path[:len(path):len(path)]
paths = p.allBetween(from, to, append([]bool(nil), seen...), append(path, p.nodes[n]), paths)
}
return paths
}
var shortestBenchmarks = []struct {
n, d int
p float64
seed uint64
}{
{n: 100, d: 2, p: 0.5, seed: 1},
{n: 1000, d: 2, p: 0.5, seed: 1},
{n: 100, d: 4, p: 0.25, seed: 1},
{n: 1000, d: 4, p: 0.25, seed: 1},
{n: 100, d: 16, p: 0.1, seed: 1},
{n: 1000, d: 16, p: 0.1, seed: 1},
}
func BenchmarkShortestAlts(b *testing.B) {
for _, bench := range shortestBenchmarks {
g := simple.NewDirectedGraph()
gen.SmallWorldsBB(g, bench.n, bench.d, bench.p, rand.New(rand.NewSource(bench.seed)))
// Find the widest path set.
var (
bestP ShortestAlts
bestVid int64
n int
)
for uid := int64(0); uid < int64(bench.n); uid++ {
p := DijkstraAllFrom(g.Node(uid), g)
for vid := int64(0); vid < int64(bench.n); vid++ {
paths, _ := p.AllTo(vid)
if len(paths) > n {
n = len(paths)
bestP = p
bestVid = vid
}
}
}
b.Run(fmt.Sprintf("AllTo_%d×%d|%v(%d)", bench.n, bench.d, bench.p, n), func(b *testing.B) {
for i := 0; i < b.N; i++ {
paths, _ := bestP.AllTo(bestVid)
if len(paths) != n {
b.Errorf("unexpected number of paths: got:%d want:%d", len(paths), n)
}
}
})
b.Run(fmt.Sprintf("AllToFunc_%d×%d|%v(%d)", bench.n, bench.d, bench.p, n), func(b *testing.B) {
for i := 0; i < b.N; i++ {
var paths int
bestP.AllToFunc(bestVid, func(_ []graph.Node) { paths++ })
if paths != n {
b.Errorf("unexpected number of paths: got:%d want:%d", paths, n)
}
}
})
}
}
func BenchmarkAllShortest(b *testing.B) {
shortestPathAlgs := []struct {
name string
fn func(g graph.Graph) AllShortest
}{
{
name: "DijkstraAllPaths",
fn: DijkstraAllPaths,
},
{
name: "FloydWarshall",
fn: func(g graph.Graph) AllShortest {
p, _ := FloydWarshall(g)
return p
},
},
}
for _, bench := range shortestBenchmarks {
for _, f := range shortestPathAlgs {
g := simple.NewDirectedGraph()
gen.SmallWorldsBB(g, bench.n, bench.d, bench.p, rand.New(rand.NewSource(bench.seed)))
p := f.fn(g)
// Find the widest path set.
var (
bestUid, bestVid int64
n int
)
for uid := int64(0); uid < int64(bench.n); uid++ {
for vid := int64(0); vid < int64(bench.n); vid++ {
paths, _ := p.AllBetween(uid, vid)
if len(paths) > n {
n = len(paths)
bestUid = uid
bestVid = vid
}
}
}
b.Run(fmt.Sprintf("%s_Between_%d×%d|%v(%d)", f.name, bench.n, bench.d, bench.p, n), func(b *testing.B) {
for i := 0; i < b.N; i++ {
path, _, _ := p.Between(bestUid, bestVid)
if len(path) == 0 {
b.Errorf("unexpected empty path: got:%d want:%d", len(path), 0)
}
}
})
b.Run(fmt.Sprintf("%s_AllBetween_%d×%d|%v(%d)", f.name, bench.n, bench.d, bench.p, n), func(b *testing.B) {
for i := 0; i < b.N; i++ {
paths, _ := p.AllBetween(bestUid, bestVid)
if len(paths) != n {
b.Errorf("unexpected number of paths: got:%d want:%d", len(paths), n)
}
}
})
b.Run(fmt.Sprintf("%s_AllBetweenFunc_%d×%d|%v(%d)", f.name, bench.n, bench.d, bench.p, n), func(b *testing.B) {
for i := 0; i < b.N; i++ {
var paths int
p.AllBetweenFunc(bestUid, bestVid, func(_ []graph.Node) { paths++ })
if paths != n {
b.Errorf("unexpected number of paths: got:%d want:%d", paths, n)
}
}
})
}
}
}
|