1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import (
"cmp"
"math"
"slices"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/iterator"
)
// YenKShortestPaths returns the k-shortest loopless paths from s to t in g
// with path costs no greater than cost beyond the shortest path.
// If k is negative, only path cost will be used to limit the set of returned
// paths. YenKShortestPaths will panic if g contains a negative edge weight.
func YenKShortestPaths(g graph.Graph, k int, cost float64, s, t graph.Node) [][]graph.Node {
// See https://en.wikipedia.org/wiki/Yen's_algorithm and
// the paper at https://doi.org/10.1090%2Fqam%2F253822.
_, isDirected := g.(graph.Directed)
yk := yenKSPAdjuster{
Graph: g,
isDirected: isDirected,
}
if wg, ok := g.(Weighted); ok {
yk.weight = wg.Weight
} else {
yk.weight = UniformCost(g)
}
shortest, weight := DijkstraFrom(s, yk).To(t.ID())
cost += weight // Set cost to absolute cost limit.
switch len(shortest) {
case 0:
return nil
case 1:
return [][]graph.Node{shortest}
}
paths := [][]graph.Node{shortest}
var pot []yenShortest
var root []graph.Node
for i := int64(1); k < 0 || i < int64(k); i++ {
// The spur node ranges from the first node to the next
// to last node in the previous k-shortest path.
for n := 0; n < len(paths[i-1])-1; n++ {
yk.reset()
spur := paths[i-1][n]
root := append(root[:0], paths[i-1][:n+1]...)
for _, path := range paths {
if len(path) <= n {
continue
}
ok := true
for x := 0; x < len(root); x++ {
if path[x].ID() != root[x].ID() {
ok = false
break
}
}
if ok {
yk.removeEdge(path[n].ID(), path[n+1].ID())
}
}
for _, u := range root[:len(root)-1] {
yk.removeNode(u.ID())
}
spath, weight := DijkstraFrom(spur, yk).To(t.ID())
if weight > cost || math.IsInf(weight, 1) {
continue
}
if len(root) > 1 {
var rootWeight float64
for x := 1; x < len(root); x++ {
w, _ := yk.weight(root[x-1].ID(), root[x].ID())
rootWeight += w
}
spath = append(root[:len(root)-1], spath...)
weight += rootWeight
}
// Add the potential k-shortest path if it is new.
isNewPot := true
for x := range pot {
if isSamePath(pot[x].path, spath) {
isNewPot = false
break
}
}
if isNewPot {
pot = append(pot, yenShortest{spath, weight})
}
}
if len(pot) == 0 {
break
}
slices.SortFunc(pot, func(a, b yenShortest) int {
return cmp.Compare(a.weight, b.weight)
})
best := pot[0]
if len(best.path) <= 1 || best.weight > cost {
break
}
paths = append(paths, best.path)
pot = pot[1:]
}
return paths
}
func isSamePath(a, b []graph.Node) bool {
if len(a) != len(b) {
return false
}
for i, x := range a {
if x.ID() != b[i].ID() {
return false
}
}
return true
}
// yenShortest holds a path and its weight for sorting.
type yenShortest struct {
path []graph.Node
weight float64
}
// yenKSPAdjuster allows walked edges to be omitted from a graph
// without altering the embedded graph.
type yenKSPAdjuster struct {
graph.Graph
isDirected bool
// weight is the edge weight function
// used for shortest path calculation.
weight Weighting
// visitedNodes holds the nodes that have
// been removed by Yen's algorithm.
visitedNodes map[int64]struct{}
// visitedEdges holds the edges that have
// been removed by Yen's algorithm.
visitedEdges map[[2]int64]struct{}
}
func (g yenKSPAdjuster) From(id int64) graph.Nodes {
if _, blocked := g.visitedNodes[id]; blocked {
return graph.Empty
}
nodes := graph.NodesOf(g.Graph.From(id))
for i := 0; i < len(nodes); {
if g.canWalk(id, nodes[i].ID()) {
i++
continue
}
nodes[i] = nodes[len(nodes)-1]
nodes = nodes[:len(nodes)-1]
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
func (g yenKSPAdjuster) canWalk(u, v int64) bool {
if _, blocked := g.visitedNodes[v]; blocked {
return false
}
_, blocked := g.visitedEdges[[2]int64{u, v}]
return !blocked
}
func (g yenKSPAdjuster) removeNode(u int64) {
g.visitedNodes[u] = struct{}{}
}
func (g yenKSPAdjuster) removeEdge(u, v int64) {
g.visitedEdges[[2]int64{u, v}] = struct{}{}
if !g.isDirected {
g.visitedEdges[[2]int64{v, u}] = struct{}{}
}
}
func (g *yenKSPAdjuster) reset() {
g.visitedNodes = make(map[int64]struct{})
g.visitedEdges = make(map[[2]int64]struct{})
}
func (g yenKSPAdjuster) Weight(xid, yid int64) (w float64, ok bool) {
return g.weight(xid, yid)
}
|