1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package spectral
import (
"math"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/mat"
)
// Laplacian is a graph Laplacian matrix.
type Laplacian struct {
// Matrix holds the Laplacian matrix.
mat.Matrix
// Nodes holds the input graph nodes.
Nodes []graph.Node
// Index is a mapping from the graph
// node IDs to row and column indices.
Index map[int64]int
}
// NewLaplacian returns a Laplacian matrix for the simple undirected graph g.
// The Laplacian is defined as D-A where D is a diagonal matrix holding the
// degree of each node and A is the graph adjacency matrix of the input graph.
// If g contains self edges, NewLaplacian will panic.
func NewLaplacian(g graph.Undirected) Laplacian {
nodes := graph.NodesOf(g.Nodes())
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewSymDense(len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := graph.NodesOf(g.From(uid))
l.SetSym(j, j, float64(len(to)))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
if uid < vid {
l.SetSym(indexOf[vid], j, -1)
}
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
// NewSymNormLaplacian returns a symmetric normalized Laplacian matrix for the
// simple undirected graph g.
// The normalized Laplacian is defined as I-D^(-1/2)AD^(-1/2) where D is a
// diagonal matrix holding the degree of each node and A is the graph adjacency
// matrix of the input graph.
// If g contains self edges, NewSymNormLaplacian will panic.
func NewSymNormLaplacian(g graph.Undirected) Laplacian {
nodes := graph.NodesOf(g.Nodes())
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewSymDense(len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := graph.NodesOf(g.From(uid))
if len(to) == 0 {
continue
}
l.SetSym(j, j, 1)
squdeg := math.Sqrt(float64(len(to)))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
if uid < vid {
to := g.From(vid)
k := to.Len()
if k < 0 {
k = len(graph.NodesOf(to))
}
l.SetSym(indexOf[vid], j, -1/(squdeg*math.Sqrt(float64(k))))
}
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
// NewRandomWalkLaplacian returns a damp-scaled random walk Laplacian matrix for
// the simple graph g.
// The random walk Laplacian is defined as I-D^(-1)A where D is a diagonal matrix
// holding the degree of each node and A is the graph adjacency matrix of the input
// graph.
// If g contains self edges, NewRandomWalkLaplacian will panic.
func NewRandomWalkLaplacian(g graph.Graph, damp float64) Laplacian {
nodes := graph.NodesOf(g.Nodes())
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewDense(len(nodes), len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := graph.NodesOf(g.From(uid))
if len(to) == 0 {
continue
}
l.Set(j, j, 1-damp)
rudeg := (damp - 1) / float64(len(to))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
l.Set(indexOf[vid], j, rudeg)
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
|