File: testgraph.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (2169 lines) | stat: -rw-r--r-- 68,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package testgraph provides a set of testing helper functions
// that test Gonum graph interface implementations.
package testgraph // import "gonum.org/v1/gonum/graph/testgraph"

import (
	"cmp"
	"fmt"
	"reflect"
	"slices"
	"testing"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/floats/scalar"
	"gonum.org/v1/gonum/graph"
	"gonum.org/v1/gonum/graph/internal/set"
	"gonum.org/v1/gonum/internal/order"
	"gonum.org/v1/gonum/mat"
)

// BUG(kortschak): Edge equality is tested in part with reflect.DeepEqual and
// direct equality of weight values. This means that edges returned by graphs
// must not contain NaN values. Weights returned by the Weight method are
// compared with NaN-awareness, so they may be NaN when there is no edge
// associated with the Weight call.

func isValidIterator(it graph.Iterator) bool {
	return it != nil
}

func checkEmptyIterator(t *testing.T, it graph.Iterator, useEmpty bool) {
	t.Helper()

	if it.Len() != 0 {
		return
	}
	if it != graph.Empty {
		if useEmpty {
			t.Errorf("unexpected empty iterator: got:%T", it)
			return
		}
		// Only log this since we say that a graph should
		// return a graph.Empty when it is empty.
		t.Logf("unexpected empty iterator: got:%T", it)
	}
}

func hasEnds(x, y graph.Node, e Edge) bool {
	return (e.From().ID() == x.ID() && e.To().ID() == y.ID()) ||
		(e.From().ID() == y.ID() && e.To().ID() == x.ID())
}

// Edge supports basic edge operations.
type Edge interface {
	// From returns the from node of the edge.
	From() graph.Node

	// To returns the to node of the edge.
	To() graph.Node
}

// WeightedLine is a generalized graph edge that supports all graph
// edge operations except reversal.
type WeightedLine interface {
	Edge

	// ID returns the unique ID for the Line.
	ID() int64

	// Weight returns the weight of the edge.
	Weight() float64
}

// A Builder function returns a graph constructed from the nodes, edges and
// default weights passed in, potentially altering the nodes and edges to
// conform to the requirements of the graph. The graph is returned along with
// the nodes, edges and default weights used to construct the graph.
// The returned edges may be any of graph.Edge, graph.WeightedEdge, graph.Line
// or graph.WeightedLine depending on what the graph requires.
// The client may skip a test case by returning ok=false when the input is not
// a valid graph construction.
type Builder func(nodes []graph.Node, edges []WeightedLine, self, absent float64) (g graph.Graph, n []graph.Node, e []Edge, s, a float64, ok bool)

// edgeLister is a graph that can return all its edges.
type edgeLister interface {
	// Edges returns all the edges of a graph.
	Edges() graph.Edges
}

// weightedEdgeLister is a graph that can return all its weighted edges.
type weightedEdgeLister interface {
	// WeightedEdges returns all the weighted edges of a graph.
	WeightedEdges() graph.WeightedEdges
}

// matrixer is a graph that can return an adjacency matrix.
type matrixer interface {
	// Matrix returns the graph's adjacency matrix.
	Matrix() mat.Matrix
}

// ReturnAllNodes tests the constructed graph for the ability to return all
// the nodes it claims it has used in its construction. This is a check of
// the Nodes method of graph.Graph and the iterator that is returned.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnAllNodes(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, want, _, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		it := g.Nodes()
		if !isValidIterator(it) {
			t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
			continue
		}
		checkEmptyIterator(t, it, useEmpty)
		var got []graph.Node
		for it.Next() {
			got = append(got, it.Node())
		}

		order.ByID(got)
		order.ByID(want)

		if !reflect.DeepEqual(got, want) {
			t.Errorf("unexpected nodes result for test %q:\ngot: %v\nwant:%v", test.name, got, want)
		}
	}
}

// ReturnNodeSlice tests the constructed graph for the ability to return all
// the nodes it claims it has used in its construction using the NodeSlicer
// interface. This is a check of the Nodes method of graph.Graph and the
// iterator that is returned.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnNodeSlice(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, want, _, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		it := g.Nodes()
		if !isValidIterator(it) {
			t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
			continue
		}
		checkEmptyIterator(t, it, useEmpty)
		if it == nil {
			continue
		}
		s, ok := it.(graph.NodeSlicer)
		if !ok {
			t.Errorf("invalid type for test %q: %T cannot return node slicer", test.name, g)
			continue
		}
		got := s.NodeSlice()

		order.ByID(got)
		order.ByID(want)

		if !reflect.DeepEqual(got, want) {
			t.Errorf("unexpected nodes result for test %q:\ngot: %v\nwant:%v", test.name, got, want)
		}
	}
}

// NodeExistence tests the constructed graph for the ability to correctly
// return the existence of nodes within the graph. This is a check of the
// Node method of graph.Graph.
func NodeExistence(t *testing.T, b Builder) {
	for _, test := range testCases {
		g, want, _, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		seen := set.NewNodes()
		for _, exist := range want {
			seen.Add(exist)
			if g.Node(exist.ID()) == nil {
				t.Errorf("missing node for test %q: %v", test.name, exist)
			}
		}
		for _, ghost := range test.nonexist {
			if g.Node(ghost.ID()) != nil {
				if seen.Has(ghost) {
					// Do not fail nodes that the graph builder says can exist
					// even if the test case input thinks they should not.
					t.Logf("builder has modified non-exist node set: %v is now allowed and present", ghost)
					continue
				}
				t.Errorf("unexpected node for test %q: %v", test.name, ghost)
			}
		}
	}
}

// ReturnAllEdges tests the constructed graph for the ability to return all
// the edges it claims it has used in its construction. This is a check of
// the Edges method of graph.Graph and the iterator that is returned.
// ReturnAllEdges  also checks that the edge end nodes exist within the graph,
// checking the Node method of graph.Graph.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnAllEdges(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, _, want, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		var got []Edge
		switch eg := g.(type) {
		case edgeLister:
			it := eg.Edges()
			if !isValidIterator(it) {
				t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
				continue
			}
			checkEmptyIterator(t, it, useEmpty)
			for it.Next() {
				e := it.Edge()
				got = append(got, e)
				qe := g.Edge(e.From().ID(), e.To().ID())
				if qe == nil {
					t.Errorf("missing edge for test %q: %v", test.name, e)
				} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
					t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
						test.name, e.From().ID(), e.To().ID(), qe)
				}
				if g.Node(e.From().ID()) == nil {
					t.Errorf("missing from node for test %q: %v", test.name, e.From().ID())
				}
				if g.Node(e.To().ID()) == nil {
					t.Errorf("missing to node for test %q: %v", test.name, e.To().ID())
				}
			}

		default:
			t.Errorf("invalid type for test %q: %T cannot return edge iterator", test.name, g)
			continue
		}

		checkEdges(t, test.name, g, got, want)
	}
}

// ReturnEdgeSlice tests the constructed graph for the ability to return all
// the edges it claims it has used in its construction using the EdgeSlicer
// interface. This is a check of the Edges method of graph.Graph and the
// iterator that is returned. ReturnEdgeSlice also checks that the edge end
// nodes exist within the graph, checking the Node method of graph.Graph.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnEdgeSlice(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, _, want, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		var got []Edge
		switch eg := g.(type) {
		case edgeLister:
			it := eg.Edges()
			if !isValidIterator(it) {
				t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
				continue
			}
			checkEmptyIterator(t, it, useEmpty)
			if it == nil {
				continue
			}
			s, ok := it.(graph.EdgeSlicer)
			if !ok {
				t.Errorf("invalid type for test %q: %T cannot return edge slicer", test.name, g)
				continue
			}
			gotNative := s.EdgeSlice()
			if len(gotNative) != 0 {
				got = make([]Edge, len(gotNative))
			}
			for i, e := range gotNative {
				got[i] = e

				qe := g.Edge(e.From().ID(), e.To().ID())
				if qe == nil {
					t.Errorf("missing edge for test %q: %v", test.name, e)
				} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
					t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
						test.name, e.From().ID(), e.To().ID(), qe)
				}
				if g.Node(e.From().ID()) == nil {
					t.Errorf("missing from node for test %q: %v", test.name, e.From().ID())
				}
				if g.Node(e.To().ID()) == nil {
					t.Errorf("missing to node for test %q: %v", test.name, e.To().ID())
				}
			}

		default:
			t.Errorf("invalid type for test %T: cannot return edge iterator", g)
			continue
		}

		checkEdges(t, test.name, g, got, want)
	}
}

// ReturnAllLines tests the constructed graph for the ability to return all
// the edges it claims it has used in its construction and then recover all
// the lines that contribute to those edges. This is a check of the Edges
// method of graph.Graph and the iterator that is returned and the graph.Lines
// implementation of those edges. ReturnAllLines also checks that the edge
// end nodes exist within the graph, checking the Node method of graph.Graph.
//
// The edges used within and returned by the Builder function should be
// graph.Line. The edge parameter passed to b will contain only graph.Line.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnAllLines(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, _, want, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		var got []Edge
		switch eg := g.(type) {
		case edgeLister:
			it := eg.Edges()
			if !isValidIterator(it) {
				t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
				continue
			}
			checkEmptyIterator(t, it, useEmpty)
			for _, e := range graph.EdgesOf(it) {
				qe := g.Edge(e.From().ID(), e.To().ID())
				if qe == nil {
					t.Errorf("missing edge for test %q: %v", test.name, e)
				} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
					t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
						test.name, e.From().ID(), e.To().ID(), qe)
				}

				// FIXME(kortschak): This would not be necessary
				// if graph.WeightedLines (and by symmetry)
				// graph.WeightedEdges also were graph.Lines
				// and graph.Edges.
				switch lit := e.(type) {
				case graph.Lines:
					if !isValidIterator(lit) {
						t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
						continue
					}
					checkEmptyIterator(t, lit, useEmpty)
					for lit.Next() {
						got = append(got, lit.Line())
					}
				case graph.WeightedLines:
					if !isValidIterator(lit) {
						t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
						continue
					}
					checkEmptyIterator(t, lit, useEmpty)
					for lit.Next() {
						got = append(got, lit.WeightedLine())
					}
				default:
					continue
				}

				if g.Node(e.From().ID()) == nil {
					t.Errorf("missing from node for test %q: %v", test.name, e.From().ID())
				}
				if g.Node(e.To().ID()) == nil {
					t.Errorf("missing to node for test %q: %v", test.name, e.To().ID())
				}
			}

		default:
			t.Errorf("invalid type for test: %T cannot return edge iterator", g)
			continue
		}

		checkEdges(t, test.name, g, got, want)
	}
}

// ReturnAllWeightedEdges tests the constructed graph for the ability to return
// all the edges it claims it has used in its construction. This is a check of
// the Edges method of graph.Graph and the iterator that is returned.
// ReturnAllWeightedEdges also checks that the edge end nodes exist within the
// graph, checking the Node method of graph.Graph.
//
// The edges used within and returned by the Builder function should be
// graph.WeightedEdge. The edge parameter passed to b will contain only
// graph.WeightedEdge.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnAllWeightedEdges(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, _, want, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		var got []Edge
		switch eg := g.(type) {
		case weightedEdgeLister:
			it := eg.WeightedEdges()
			if !isValidIterator(it) {
				t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
				continue
			}
			checkEmptyIterator(t, it, useEmpty)
			for it.Next() {
				e := it.WeightedEdge()
				got = append(got, e)
				switch g := g.(type) {
				case graph.Weighted:
					qe := g.WeightedEdge(e.From().ID(), e.To().ID())
					if qe == nil {
						t.Errorf("missing edge for test %q: %v", test.name, e)
					} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, e.From().ID(), e.To().ID(), qe)
					}
				default:
					t.Logf("weighted edge lister is not a weighted graph - are you sure?: %T", g)
					qe := g.Edge(e.From().ID(), e.To().ID())
					if qe == nil {
						t.Errorf("missing edge for test %q: %v", test.name, e)
					} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, e.From().ID(), e.To().ID(), qe)
					}
				}
				if g.Node(e.From().ID()) == nil {
					t.Errorf("missing from node for test %q: %v", test.name, e.From().ID())
				}
				if g.Node(e.To().ID()) == nil {
					t.Errorf("missing to node for test %q: %v", test.name, e.To().ID())
				}
			}

		default:
			t.Errorf("invalid type for test: %T cannot return weighted edge iterator", g)
			continue
		}

		checkEdges(t, test.name, g, got, want)
	}
}

// ReturnWeightedEdgeSlice tests the constructed graph for the ability to
// return all the edges it claims it has used in its construction using the
// WeightedEdgeSlicer interface. This is a check of the Edges method of
// graph.Graph and the iterator that is returned. ReturnWeightedEdgeSlice
// also checks that the edge end nodes exist within the graph, checking
// the Node method of graph.Graph.
//
// The edges used within and returned by the Builder function should be
// graph.WeightedEdge. The edge parameter passed to b will contain only
// graph.WeightedEdge.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnWeightedEdgeSlice(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, _, want, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		var got []Edge
		switch eg := g.(type) {
		case weightedEdgeLister:
			it := eg.WeightedEdges()
			if !isValidIterator(it) {
				t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
				continue
			}
			checkEmptyIterator(t, it, useEmpty)
			s, ok := it.(graph.WeightedEdgeSlicer)
			if !ok {
				t.Errorf("invalid type for test %T: cannot return weighted edge slice", g)
				continue
			}
			for _, e := range s.WeightedEdgeSlice() {
				got = append(got, e)
				qe := g.Edge(e.From().ID(), e.To().ID())
				if qe == nil {
					t.Errorf("missing edge for test %q: %v", test.name, e)
				} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
					t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
						test.name, e.From().ID(), e.To().ID(), qe)
				}
				if g.Node(e.From().ID()) == nil {
					t.Errorf("missing from node for test %q: %v", test.name, e.From().ID())
				}
				if g.Node(e.To().ID()) == nil {
					t.Errorf("missing to node for test %q: %v", test.name, e.To().ID())
				}
			}

		default:
			t.Errorf("invalid type for test: %T cannot return weighted edge iterator", g)
			continue
		}

		checkEdges(t, test.name, g, got, want)
	}
}

// ReturnAllWeightedLines tests the constructed graph for the ability to return
// all the edges it claims it has used in its construction and then recover all
// the lines that contribute to those edges. This is a check of the Edges
// method of graph.Graph and the iterator that is returned and the graph.Lines
// implementation of those edges. ReturnAllWeightedLines also checks that the
// edge end nodes exist within the graph, checking the Node method of
// graph.Graph.
//
// The edges used within and returned by the Builder function should be
// graph.WeightedLine. The edge parameter passed to b will contain only
// graph.WeightedLine.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty.
func ReturnAllWeightedLines(t *testing.T, b Builder, useEmpty bool) {
	for _, test := range testCases {
		g, _, want, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		var got []Edge
		switch eg := g.(type) {
		case weightedEdgeLister:
			it := eg.WeightedEdges()
			if !isValidIterator(it) {
				t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
				continue
			}
			checkEmptyIterator(t, it, useEmpty)
			for _, e := range graph.WeightedEdgesOf(it) {
				qe := g.Edge(e.From().ID(), e.To().ID())
				if qe == nil {
					t.Errorf("missing edge for test %q: %v", test.name, e)
				} else if qe.From().ID() != e.From().ID() || qe.To().ID() != e.To().ID() {
					t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
						test.name, e.From().ID(), e.To().ID(), qe)
				}

				// FIXME(kortschak): This would not be necessary
				// if graph.WeightedLines (and by symmetry)
				// graph.WeightedEdges also were graph.Lines
				// and graph.Edges.
				switch lit := e.(type) {
				case graph.Lines:
					if !isValidIterator(lit) {
						t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
						continue
					}
					checkEmptyIterator(t, lit, useEmpty)
					for lit.Next() {
						got = append(got, lit.Line())
					}
				case graph.WeightedLines:
					if !isValidIterator(lit) {
						t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
						continue
					}
					checkEmptyIterator(t, lit, useEmpty)
					for lit.Next() {
						got = append(got, lit.WeightedLine())
					}
				default:
					continue
				}

				if g.Node(e.From().ID()) == nil {
					t.Errorf("missing from node for test %q: %v", test.name, e.From().ID())
				}
				if g.Node(e.To().ID()) == nil {
					t.Errorf("missing to node for test %q: %v", test.name, e.To().ID())
				}
			}

		default:
			t.Errorf("invalid type for test: %T cannot return edge iterator", g)
			continue
		}

		checkEdges(t, test.name, g, got, want)
	}
}

// checkEdges compares got and want for the given graph type.
func checkEdges(t *testing.T, name string, g graph.Graph, got, want []Edge) {
	t.Helper()
	switch g.(type) {
	case graph.Undirected:
		sortLexicalUndirectedEdges(got)
		sortLexicalUndirectedEdges(want)
		if !undirectedEdgeSetEqual(got, want) {
			t.Errorf("unexpected edges result for test %q:\ngot: %#v\nwant:%#v", name, got, want)
		}
	default:
		sortLexicalEdges(got)
		sortLexicalEdges(want)
		if !reflect.DeepEqual(got, want) {
			t.Errorf("unexpected edges result for test %q:\ngot: %#v\nwant:%#v", name, got, want)
		}
	}
}

// EdgeExistence tests the constructed graph for the ability to correctly
// return the existence of edges within the graph. This is a check of the
// Edge methods of graph.Graph, the EdgeBetween method of graph.Undirected
// and the EdgeFromTo method of graph.Directed. EdgeExistence also checks
// that the nodes and traversed edges exist within the graph, checking the
// Node, Edge, EdgeBetween and HasEdgeBetween methods of graph.Graph, the
// EdgeBetween method of graph.Undirected and the HasEdgeFromTo method of
// graph.Directed. If reversedEdge is true, edges will be checked to make
// sure edges returned match the orientation of an Edge or WeightedEdge
// call.
func EdgeExistence(t *testing.T, b Builder, reversedEdge bool) {
	for _, test := range testCases {
		g, nodes, edges, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		want := make(map[edge]bool)
		for _, e := range edges {
			want[edge{f: e.From().ID(), t: e.To().ID()}] = true
		}
		for _, x := range nodes {
			for _, y := range nodes {
				between := want[edge{f: x.ID(), t: y.ID()}] || want[edge{f: y.ID(), t: x.ID()}]

				if has := g.HasEdgeBetween(x.ID(), y.ID()); has != between {
					if has {
						t.Errorf("unexpected edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					} else {
						t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
				} else {
					if want[edge{f: x.ID(), t: y.ID()}] {
						e := g.Edge(x.ID(), y.ID())
						if e == nil || !hasEnds(x, y, e) {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						} else if reversedEdge && (e.From().ID() != x.ID() || e.To().ID() != y.ID()) {
							t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
								test.name, x.ID(), y.ID(), e)
						}
					}
					if between && !g.HasEdgeBetween(x.ID(), y.ID()) {
						t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
					if g.Node(x.ID()) == nil {
						t.Errorf("missing from node for test %q: %v", test.name, x.ID())
					}
					if g.Node(y.ID()) == nil {
						t.Errorf("missing to node for test %q: %v", test.name, y.ID())
					}
				}

				switch g := g.(type) {
				case graph.Directed:
					u := x
					v := y
					if has := g.HasEdgeFromTo(u.ID(), v.ID()); has != want[edge{f: u.ID(), t: v.ID()}] {
						if has {
							t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
						} else {
							t.Errorf("missing edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
						}
						continue
					}
					// Edge has already been tested above.
					if g.Node(u.ID()) == nil {
						t.Errorf("missing from node for test %q: %v", test.name, u.ID())
					}
					if g.Node(v.ID()) == nil {
						t.Errorf("missing to node for test %q: %v", test.name, v.ID())
					}

				case graph.Undirected:
					// HasEdgeBetween is already tested above.
					if between && g.Edge(x.ID(), y.ID()) == nil {
						t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
					if between && g.EdgeBetween(x.ID(), y.ID()) == nil {
						t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
				}

				switch g := g.(type) {
				case graph.WeightedDirected:
					u := x
					v := y
					if has := g.WeightedEdge(u.ID(), v.ID()) != nil; has != want[edge{f: u.ID(), t: v.ID()}] {
						if has {
							t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
						} else {
							t.Errorf("missing edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
						}
						continue
					}

				case graph.WeightedUndirected:
					// HasEdgeBetween is already tested above.
					if between && g.WeightedEdge(x.ID(), y.ID()) == nil {
						t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
					if between && g.WeightedEdgeBetween(x.ID(), y.ID()) == nil {
						t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
				}
			}
		}
	}
}

// LineExistence tests the constructed graph for the ability to correctly
// return the existence of lines within the graph. This is a check of the
// Line methods of graph.Multigraph, the EdgeBetween method of graph.Undirected
// and the EdgeFromTo method of graph.Directed. LineExistence also checks
// that the nodes and traversed edges exist within the graph, checking the
// Node, Edge, EdgeBetween and HasEdgeBetween methods of graph.Graph, the
// EdgeBetween method of graph.Undirected and the HasEdgeFromTo method of
// graph.Directed. If reversedLine is true, lines will be checked to make
// sure lines returned match the orientation of an Line or WeightedLine
// call.
func LineExistence(t *testing.T, b Builder, useEmpty, reversedLine bool) {
	for _, test := range testCases {
		g, nodes, edges, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		switch mg := g.(type) {
		case graph.Multigraph:
			want := make(map[edge]bool)
			for _, e := range edges {
				want[edge{f: e.From().ID(), t: e.To().ID()}] = true
			}
			for _, x := range nodes {
				for _, y := range nodes {
					between := want[edge{f: x.ID(), t: y.ID()}] || want[edge{f: y.ID(), t: x.ID()}]

					if has := g.HasEdgeBetween(x.ID(), y.ID()); has != between {
						if has {
							t.Errorf("unexpected edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						} else {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						}
					} else {
						if want[edge{f: x.ID(), t: y.ID()}] {
							lit := mg.Lines(x.ID(), y.ID())
							if !isValidIterator(lit) {
								t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
								continue
							}
							checkEmptyIterator(t, lit, useEmpty)
							if lit.Len() == 0 {
								t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
							} else {
								for lit.Next() {
									l := lit.Line()
									if l == nil || !hasEnds(x, y, l) {
										t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
									} else if reversedLine && (l.From().ID() != x.ID() || l.To().ID() != y.ID()) {
										t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
											test.name, x.ID(), y.ID(), l)
									}
								}
							}
						}
						if between && !g.HasEdgeBetween(x.ID(), y.ID()) {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						}
						if g.Node(x.ID()) == nil {
							t.Errorf("missing from node for test %q: %v", test.name, x.ID())
						}
						if g.Node(y.ID()) == nil {
							t.Errorf("missing to node for test %q: %v", test.name, y.ID())
						}
					}

					switch g := g.(type) {
					case graph.DirectedMultigraph:
						u := x
						v := y
						if has := g.HasEdgeFromTo(u.ID(), v.ID()); has != want[edge{f: u.ID(), t: v.ID()}] {
							if has {
								t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
							} else {
								t.Errorf("missing edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
							}
							continue
						}
						// Edge has already been tested above.
						if g.Node(u.ID()) == nil {
							t.Errorf("missing from node for test %q: %v", test.name, u.ID())
						}
						if g.Node(v.ID()) == nil {
							t.Errorf("missing to node for test %q: %v", test.name, v.ID())
						}

					case graph.UndirectedMultigraph:
						// HasEdgeBetween is already tested above.
						lit := g.Lines(x.ID(), y.ID())
						if !isValidIterator(lit) {
							t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
							continue
						}
						checkEmptyIterator(t, lit, useEmpty)
						if between && lit.Len() == 0 {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						} else {
							for lit.Next() {
								l := lit.Line()
								if l == nil || !hasEnds(x, y, l) {
									t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
								} else if reversedLine && (l.From().ID() != x.ID() || l.To().ID() != y.ID()) {
									t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
										test.name, x.ID(), y.ID(), l)
								}
							}
						}
						lit = g.LinesBetween(x.ID(), y.ID())
						if !isValidIterator(lit) {
							t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
							continue
						}
						checkEmptyIterator(t, lit, useEmpty)
						if between && lit.Len() == 0 {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						} else {
							for lit.Next() {
								l := lit.Line()
								if l == nil || !hasEnds(x, y, l) {
									t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
								} else if reversedLine && (l.From().ID() != x.ID() || l.To().ID() != y.ID()) {
									t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
										test.name, x.ID(), y.ID(), l)
								}
							}
						}
					}

					switch g := g.(type) {
					case graph.WeightedDirectedMultigraph:
						u := x
						v := y
						lit := g.WeightedLines(u.ID(), v.ID())
						if !isValidIterator(lit) {
							t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
							continue
						}
						checkEmptyIterator(t, lit, useEmpty)
						if has := lit != graph.Empty; has != want[edge{f: u.ID(), t: v.ID()}] {
							if has {
								t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
							} else {
								t.Errorf("missing edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
							}
							continue
						}
						for lit.Next() {
							l := lit.WeightedLine()
							if l.From().ID() != x.ID() || l.To().ID() != y.ID() {
								t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
									test.name, x.ID(), y.ID(), l)
							}
						}
						// Edge has already been tested above.
						if g.Node(u.ID()) == nil {
							t.Errorf("missing from node for test %q: %v", test.name, u.ID())
						}
						if g.Node(v.ID()) == nil {
							t.Errorf("missing to node for test %q: %v", test.name, v.ID())
						}

					case graph.WeightedUndirectedMultigraph:
						// HasEdgeBetween is already tested above.
						lit := g.WeightedLines(x.ID(), y.ID())
						if !isValidIterator(lit) {
							t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
							continue
						}
						checkEmptyIterator(t, lit, useEmpty)
						if between && lit.Len() == 0 {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						} else {
							for lit.Next() {
								l := lit.WeightedLine()
								if reversedLine && (l.From().ID() != x.ID() || l.To().ID() != y.ID()) {
									t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
										test.name, x.ID(), y.ID(), l)
								}
							}
						}
						lit = g.WeightedLinesBetween(x.ID(), y.ID())
						if !isValidIterator(lit) {
							t.Errorf("invalid iterator for test %q: got:%#v", test.name, lit)
							continue
						}
						checkEmptyIterator(t, lit, useEmpty)
						if between && lit.Len() == 0 {
							t.Errorf("missing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
						} else {
							for lit.Next() {
								l := lit.WeightedLine()
								if reversedLine && (l.From().ID() != x.ID() || l.To().ID() != y.ID()) {
									t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
										test.name, x.ID(), y.ID(), l)
								}
							}
						}
					}
				}
			}
		default:
			t.Errorf("invalid type for test: %T not a multigraph", g)
			continue
		}
	}
}

// ReturnAdjacentNodes tests the constructed graph for the ability to correctly
// return the nodes reachable from each node within the graph. This is a check
// of the From method of graph.Graph and the To method of graph.Directed.
// ReturnAdjacentNodes also checks that the nodes and traversed edges exist
// within the graph, checking the Node, Edge, EdgeBetween and HasEdgeBetween
// methods of graph.Graph, the EdgeBetween method of graph.Undirected and the
// HasEdgeFromTo method of graph.Directed.
// If useEmpty is true, graph iterators will be checked for the use of
// graph.Empty if they are empty. If reversedEdge is true, edges will be checked
// to make sure edges returned match the orientation of an Edge or WeightedEdge
// call.
func ReturnAdjacentNodes(t *testing.T, b Builder, useEmpty, reversedEdge bool) {
	for _, test := range testCases {
		g, nodes, edges, _, _, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}

		want := make(map[edge]bool)
		for _, e := range edges {
			want[edge{f: e.From().ID(), t: e.To().ID()}] = true
			if g.From(e.From().ID()).Len() == 0 {
				t.Errorf("missing path from node %v with outbound edge %v", e.From().ID(), e)
			}
		}
		for _, x := range nodes {
			switch g := g.(type) {
			case graph.Directed:
				// Test forward.
				u := x
				it := g.From(u.ID())
				if !isValidIterator(it) {
					t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
					continue
				}
				checkEmptyIterator(t, it, useEmpty)
				for i := 0; it.Next(); i++ {
					v := it.Node()
					if i == 0 && g.Node(u.ID()) == nil {
						t.Errorf("missing from node for test %q: %v", test.name, u.ID())
					}
					if g.Node(v.ID()) == nil {
						t.Errorf("missing to node for test %q: %v", test.name, v.ID())
					}
					qe := g.Edge(u.ID(), v.ID())
					if qe == nil {
						t.Errorf("missing from edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
					} else if qe.From().ID() != u.ID() || qe.To().ID() != v.ID() {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, u.ID(), v.ID(), qe)
					}
					if !g.HasEdgeBetween(u.ID(), v.ID()) {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
					}
					if !g.HasEdgeFromTo(u.ID(), v.ID()) {
						t.Errorf("missing from edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
					}
					if !want[edge{f: u.ID(), t: v.ID()}] {
						t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
					}
				}

				// Test backward.
				v := x
				it = g.To(v.ID())
				if !isValidIterator(it) {
					t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
					continue
				}
				checkEmptyIterator(t, it, useEmpty)
				for i := 0; it.Next(); i++ {
					u := it.Node()
					if i == 0 && g.Node(v.ID()) == nil {
						t.Errorf("missing to node for test %q: %v", test.name, v.ID())
					}
					if g.Node(u.ID()) == nil {
						t.Errorf("missing from node for test %q: %v", test.name, u.ID())
					}
					qe := g.Edge(u.ID(), v.ID())
					if qe == nil {
						t.Errorf("missing from edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
						continue
					}
					if qe.From().ID() != u.ID() || qe.To().ID() != v.ID() {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, u.ID(), v.ID(), qe)
					}
					if !g.HasEdgeBetween(u.ID(), v.ID()) {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
						continue
					}
					if !g.HasEdgeFromTo(u.ID(), v.ID()) {
						t.Errorf("missing from edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
						continue
					}
					if !want[edge{f: u.ID(), t: v.ID()}] {
						t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
					}
				}
				for _, e := range edges {
					if g.To(e.To().ID()).Len() == 0 {
						t.Errorf("missing path to node %v with inbound edge %v", e.To().ID(), e)
					}
				}

			case graph.Undirected:
				u := x
				it := g.From(u.ID())
				if !isValidIterator(it) {
					t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
					continue
				}
				checkEmptyIterator(t, it, useEmpty)
				for i := 0; it.Next(); i++ {
					v := it.Node()
					if i == 0 && g.Node(u.ID()) == nil {
						t.Errorf("missing from node for test %q: %v", test.name, u.ID())
					}
					qe := g.Edge(u.ID(), v.ID())
					if qe == nil || !hasEnds(u, v, qe) {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
						continue
					}
					if reversedEdge && (qe.From().ID() != u.ID() || qe.To().ID() != v.ID()) {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, u.ID(), v.ID(), qe)
					}
					qe = g.EdgeBetween(u.ID(), v.ID())
					if qe == nil || !hasEnds(u, v, qe) {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
						continue
					}
					if reversedEdge && (qe.From().ID() != u.ID() || qe.To().ID() != v.ID()) {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, u.ID(), v.ID(), qe)
					}
					if !g.HasEdgeBetween(u.ID(), v.ID()) {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
						continue
					}
					between := want[edge{f: u.ID(), t: v.ID()}] || want[edge{f: v.ID(), t: u.ID()}]
					if !between {
						t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
					}
				}

			default:
				u := x
				it := g.From(u.ID())
				if !isValidIterator(it) {
					t.Errorf("invalid iterator for test %q: got:%#v", test.name, it)
					continue
				}
				checkEmptyIterator(t, it, useEmpty)
				for i := 0; it.Next(); i++ {
					v := it.Node()
					if i == 0 && g.Node(u.ID()) == nil {
						t.Errorf("missing from node for test %q: %v", test.name, u.ID())
					}
					qe := g.Edge(u.ID(), v.ID())
					if qe == nil {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
						continue
					}
					if qe.From().ID() != u.ID() || qe.To().ID() != v.ID() {
						t.Errorf("inverted edge for test %q query with F=%d T=%d: got:%#v",
							test.name, u.ID(), v.ID(), qe)
					}
					if !g.HasEdgeBetween(u.ID(), v.ID()) {
						t.Errorf("missing from edge for test %q: (%v)--(%v)", test.name, u.ID(), v.ID())
						continue
					}
					between := want[edge{f: u.ID(), t: v.ID()}] || want[edge{f: v.ID(), t: u.ID()}]
					if !between {
						t.Errorf("unexpected edge for test %q: (%v)->(%v)", test.name, u.ID(), v.ID())
					}
				}
			}
		}
	}
}

// Weight tests the constructed graph for the ability to correctly return
// the weight between to nodes, checking the Weight method of graph.Weighted.
//
// The self and absent values returned by the Builder should match the values
// used by the Weight method.
func Weight(t *testing.T, b Builder) {
	for _, test := range testCases {
		g, nodes, _, self, absent, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}
		wg, ok := g.(graph.Weighted)
		if !ok {
			t.Errorf("invalid graph type for test %q: %T is not graph.Weighted", test.name, g)
		}
		_, multi := g.(graph.Multigraph)

		for _, x := range nodes {
			for _, y := range nodes {
				w, ok := wg.Weight(x.ID(), y.ID())
				e := wg.WeightedEdge(x.ID(), y.ID())
				switch {
				case !ok:
					if e != nil {
						t.Errorf("missing edge weight for existing edge for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())
					}
					if !scalar.Same(w, absent) {
						t.Errorf("unexpected absent weight for test %q: got:%v want:%v", test.name, w, absent)
					}

				case !multi && x.ID() == y.ID():
					if !scalar.Same(w, self) {
						t.Errorf("unexpected self weight for test %q: got:%v want:%v", test.name, w, self)
					}

				case e == nil:
					t.Errorf("missing edge for existing non-self weight for test %q: (%v)--(%v)", test.name, x.ID(), y.ID())

				case e.Weight() != w:
					t.Errorf("weight mismatch for test %q: edge=%v graph=%v", test.name, e.Weight(), w)
				}
			}
		}
	}
}

// AdjacencyMatrix tests the constructed graph for the ability to correctly
// return an adjacency matrix that matches the weights returned by the graphs
// Weight method.
//
// The self and absent values returned by the Builder should match the values
// used by the Weight method.
func AdjacencyMatrix(t *testing.T, b Builder) {
	for _, test := range testCases {
		g, nodes, _, self, absent, ok := b(test.nodes, test.edges, test.self, test.absent)
		if !ok {
			t.Logf("skipping test case: %q", test.name)
			continue
		}
		wg, ok := g.(graph.Weighted)
		if !ok {
			t.Errorf("invalid graph type for test %q: %T is not graph.Weighted", test.name, g)
		}
		mg, ok := g.(matrixer)
		if !ok {
			t.Errorf("invalid graph type for test %q: %T cannot return adjacency matrix", test.name, g)
		}
		m := mg.Matrix()

		r, c := m.Dims()
		if r != c || r != len(nodes) {
			t.Errorf("dimension mismatch for test %q: r=%d c=%d order=%d", test.name, r, c, len(nodes))
		}

		for _, x := range nodes {
			i := int(x.ID())
			for _, y := range nodes {
				j := int(y.ID())
				w, ok := wg.Weight(x.ID(), y.ID())
				switch {
				case !ok:
					if !scalar.Same(m.At(i, j), absent) {
						t.Errorf("weight mismatch for test %q: (%v)--(%v) matrix=%v graph=%v", test.name, x.ID(), y.ID(), m.At(i, j), w)
					}
				case x.ID() == y.ID():
					if !scalar.Same(m.At(i, j), self) {
						t.Errorf("weight mismatch for test %q: (%v)--(%v) matrix=%v graph=%v", test.name, x.ID(), y.ID(), m.At(i, j), w)
					}
				default:
					if !scalar.Same(m.At(i, j), w) {
						t.Errorf("weight mismatch for test %q: (%v)--(%v) matrix=%v graph=%v", test.name, x.ID(), y.ID(), m.At(i, j), w)
					}
				}
			}
		}
	}
}

// sortLexicalEdges sorts a collection of edges lexically on the
// keys: from.ID > to.ID > [line.ID] > [weight].
func sortLexicalEdges(edges []Edge) {
	slices.SortFunc(edges, func(a, b Edge) int {
		if n := cmp.Compare(a.From().ID(), b.From().ID()); n != 0 {
			return n
		}
		if n := cmp.Compare(a.To().ID(), b.To().ID()); n != 0 {
			return n
		}
		la, oka := a.(graph.Line)
		lb, okb := b.(graph.Line)
		if oka != okb {
			panic(fmt.Sprintf("testgraph: mismatched types %T != %T", a, b))
		}
		if oka {
			if n := cmp.Compare(la.ID(), lb.ID()); n != 0 {
				return n
			}
		}
		return cmpWeight(a, b)
	})
}

// sortLexicalUndirectedEdges sorts a collection of edges lexically on the
// keys: lo.ID > hi.ID > [line.ID] > [weight].
func sortLexicalUndirectedEdges(edges []Edge) {
	slices.SortFunc(edges, func(a, b Edge) int {
		lida, hida, _ := undirectedIDs(a)
		lidb, hidb, _ := undirectedIDs(b)

		if n := cmp.Compare(lida, lidb); n != 0 {
			return n
		}
		if n := cmp.Compare(hida, hidb); n != 0 {
			return n
		}
		la, oka := a.(graph.Line)
		lb, okb := b.(graph.Line)
		if oka != okb {
			panic(fmt.Sprintf("testgraph: mismatched types %T != %T", a, b))
		}
		if oka {
			if n := cmp.Compare(la.ID(), lb.ID()); n != 0 {
				return n
			}
		}
		return cmpWeight(a, b)
	})
}

func cmpWeight(a, b Edge) int {
	wea, oka := a.(graph.WeightedEdge)
	web, okb := b.(graph.WeightedEdge)
	if oka != okb {
		panic(fmt.Sprintf("testgraph: mismatched types %T != %T", a, b))
	}
	if !oka {
		return 0
	}
	return cmp.Compare(wea.Weight(), web.Weight())
}

// undirectedEdgeSetEqual returned whether a pair of undirected edge
// slices sorted by lexicalUndirectedEdges are equal.
func undirectedEdgeSetEqual(a, b []Edge) bool {
	if len(a) == 0 && len(b) == 0 {
		return true
	}
	if len(a) == 0 || len(b) == 0 {
		return false
	}
	if !undirectedEdgeEqual(a[0], b[0]) {
		return false
	}
	i, j := 0, 0
	for {
		switch {
		case i == len(a)-1 && j == len(b)-1:
			return true

		case i < len(a)-1 && undirectedEdgeEqual(a[i+1], b[j]):
			i++

		case j < len(b)-1 && undirectedEdgeEqual(a[i], b[j+1]):
			j++

		case i < len(a)-1 && j < len(b)-1 && undirectedEdgeEqual(a[i+1], b[j+1]):
			i++
			j++

		default:
			return false
		}
	}
}

// undirectedEdgeEqual returns whether a pair of undirected edges are equal
// after canonicalising from and to IDs by numerical sort order.
func undirectedEdgeEqual(a, b Edge) bool {
	loa, hia, inva := undirectedIDs(a)
	lob, hib, invb := undirectedIDs(b)
	// Use reflect.DeepEqual if the edges are parallel
	// rather anti-parallel.
	if inva == invb {
		return reflect.DeepEqual(a, b)
	}
	if loa != lob || hia != hib {
		return false
	}
	la, oka := a.(graph.Line)
	lb, okb := b.(graph.Line)
	if !oka && !okb {
		return true
	}
	if la.ID() != lb.ID() {
		return false
	}
	wea, oka := a.(graph.WeightedEdge)
	web, okb := b.(graph.WeightedEdge)
	if !oka && !okb {
		return true
	}
	return wea.Weight() == web.Weight()
}

// NodeAdder is a graph.NodeAdder graph.
type NodeAdder interface {
	graph.Graph
	graph.NodeAdder
}

// AddNodes tests whether g correctly implements the graph.NodeAdder interface.
// AddNodes gets a new node from g and adds it to the graph, repeating this pair
// of operations n times. The existence of added nodes is confirmed in the graph.
// AddNodes also checks that re-adding each of the added nodes causes a panic.
// If g satisfies NodeWithIDer, the NodeWithID method is tested for an additional
// n rounds of node addition using NodeWithID to create new nodes as well as
// confirming that NodeWithID returns existing nodes.
func AddNodes(t *testing.T, g NodeAdder, n int) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	var addedNodes []graph.Node
	for i := 0; i < n; i++ {
		node := g.NewNode()
		prev := len(graph.NodesOf(g.Nodes()))
		if g.Node(node.ID()) != nil {
			curr := g.Nodes().Len()
			if curr != prev {
				t.Fatalf("NewNode mutated graph: prev graph order != curr graph order, %d != %d", prev, curr)
			}
			t.Fatalf("NewNode returned existing: %#v", node)
		}
		g.AddNode(node)
		addedNodes = append(addedNodes, node)
		curr := len(graph.NodesOf(g.Nodes()))
		if curr != prev+1 {
			t.Fatalf("AddNode failed to mutate graph: curr graph order != prev graph order+1, %d != %d", curr, prev+1)
		}
		if g.Node(node.ID()) == nil {
			t.Fatalf("AddNode failed to add node to graph trying to add %#v", node)
		}
	}

	order.ByID(addedNodes)
	graphNodes := graph.NodesOf(g.Nodes())
	order.ByID(graphNodes)
	if !reflect.DeepEqual(addedNodes, graphNodes) {
		if n > 20 {
			t.Errorf("unexpected node set after node addition: got len:%v want len:%v", len(graphNodes), len(addedNodes))
		} else {
			t.Errorf("unexpected node set after node addition: got:\n %v\nwant:\n%v", graphNodes, addedNodes)
		}
	}

	it := g.Nodes()
	for it.Next() {
		panicked := panics(func() {
			g.AddNode(it.Node())
		})
		if !panicked {
			t.Fatalf("expected panic adding existing node: %v", it.Node())
		}
	}

	if gwi, ok := g.(graph.NodeWithIDer); ok {
		// Test existing nodes.
		it := g.Nodes()
		for it.Next() {
			id := it.Node().ID()
			n, new := gwi.NodeWithID(id)
			if n == nil {
				t.Errorf("unexpected nil node for existing node with ID=%d", id)
			}
			if new {
				t.Errorf("unexpected new node for existing node with ID=%d", id)
			}
		}
		// Run n rounds of ID-specified node addition.
		for i := 0; i < n; i++ {
			id := g.NewNode().ID() // Get a guaranteed non-existing node.
			n, new := gwi.NodeWithID(id)
			if n == nil {
				// Could not create a node, valid behaviour.
				continue
			}
			if !new {
				t.Errorf("unexpected old node for non-existing node with ID=%d", id)
			}
			g.AddNode(n) // Use the node to advance to a new non-existing node.
		}
	}
}

// AddArbitraryNodes tests whether g correctly implements the AddNode method. Not all
// graph.NodeAdder graphs are expected to implement the semantics of this test.
// AddArbitraryNodes iterates over add, adding each node to the graph. The existence
// of each added node in the graph is confirmed.
func AddArbitraryNodes(t *testing.T, g NodeAdder, add graph.Nodes) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	for add.Next() {
		node := add.Node()
		prev := len(graph.NodesOf(g.Nodes()))
		g.AddNode(node)
		curr := len(graph.NodesOf(g.Nodes()))
		if curr != prev+1 {
			t.Fatalf("AddNode failed to mutate graph: curr graph order != prev graph order+1, %d != %d", curr, prev+1)
		}
		if g.Node(node.ID()) == nil {
			t.Fatalf("AddNode failed to add node to graph trying to add %#v", node)
		}
	}

	add.Reset()
	addedNodes := graph.NodesOf(add)
	order.ByID(addedNodes)
	graphNodes := graph.NodesOf(g.Nodes())
	order.ByID(graphNodes)
	if !reflect.DeepEqual(addedNodes, graphNodes) {
		t.Errorf("unexpected node set after node addition: got:\n %v\nwant:\n%v", graphNodes, addedNodes)
	}

	it := g.Nodes()
	for it.Next() {
		panicked := panics(func() {
			g.AddNode(it.Node())
		})
		if !panicked {
			t.Fatalf("expected panic adding existing node: %v", it.Node())
		}
	}
}

// NodeRemover is a graph.NodeRemover graph.
type NodeRemover interface {
	graph.Graph
	graph.NodeRemover
}

// RemoveNodes tests whether g correctly implements the graph.NodeRemover interface.
// The input graph g must contain a set of nodes with some edges between them.
func RemoveNodes(t *testing.T, g NodeRemover) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	it := g.Nodes()
	first := true
	for it.Next() {
		u := it.Node()

		seen := make(map[edge]struct{})

		// Collect all incident edges.
		var incident []graph.Edge
		to := g.From(u.ID())
		for to.Next() {
			v := to.Node()
			e := g.Edge(u.ID(), v.ID())
			if e == nil {
				t.Fatalf("bad graph: neighbors not connected: u=%#v v=%#v", u, v)
			}
			if _, ok := g.(graph.Undirected); ok {
				seen[edge{f: e.To().ID(), t: e.From().ID()}] = struct{}{}
			}
			seen[edge{f: e.From().ID(), t: e.To().ID()}] = struct{}{}
			incident = append(incident, e)
		}

		// Collect all other edges.
		var others []graph.Edge
		currit := g.Nodes()
		for currit.Next() {
			u := currit.Node()
			to := g.From(u.ID())
			for to.Next() {
				v := to.Node()
				e := g.Edge(u.ID(), v.ID())
				if e == nil {
					t.Fatalf("bad graph: neighbors not connected: u=%#v v=%#v", u, v)
				}
				seen[edge{f: e.From().ID(), t: e.To().ID()}] = struct{}{}
				others = append(others, e)
			}
		}

		if first && len(seen) == 0 {
			t.Fatal("incomplete test: no edges in graph")
		}
		first = false

		prev := len(graph.NodesOf(g.Nodes()))
		g.RemoveNode(u.ID())
		curr := len(graph.NodesOf(g.Nodes()))
		if curr != prev-1 {
			t.Fatalf("RemoveNode failed to mutate graph: curr graph order != prev graph order-1, %d != %d", curr, prev-1)
		}
		if g.Node(u.ID()) != nil {
			t.Fatalf("failed to remove node: %#v", u)
		}

		for _, e := range incident {
			if g.HasEdgeBetween(e.From().ID(), e.To().ID()) {
				t.Fatalf("RemoveNode failed to remove connected edge: %#v", e)
			}
		}

		for _, e := range others {
			if e.From().ID() == u.ID() || e.To().ID() == u.ID() {
				continue
			}
			if g.Edge(e.From().ID(), e.To().ID()) == nil {
				t.Fatalf("RemoveNode %v removed unconnected edge: %#v", u, e)
			}
		}
	}
}

// EdgeAdder is a graph.EdgeAdder graph.
type EdgeAdder interface {
	graph.Graph
	graph.EdgeAdder
}

// AddEdges tests whether g correctly implements the graph.EdgeAdder interface.
// AddEdges creates n pairs of nodes with random IDs in [0,n) and joins edges
// each node in the pair using SetEdge. AddEdges confirms that the end point
// nodes are added to the graph and that the edges are stored in the graph.
// If canLoop is true, self edges may be created. If canSet is true, a second
// call to SetEdge is made for each edge to confirm that the nodes corresponding
// the end points are updated.
func AddEdges(t *testing.T, n int, g EdgeAdder, newNode func(id int64) graph.Node, canLoop, canSetNode bool) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	type altNode struct {
		graph.Node
	}

	rnd := rand.New(rand.NewSource(1))
	for i := 0; i < n; i++ {
		u := newNode(rnd.Int63n(int64(n)))
		var v graph.Node
		for {
			v = newNode(rnd.Int63n(int64(n)))
			if canLoop || u.ID() != v.ID() {
				break
			}
		}
		e := g.NewEdge(u, v)
		if g.Edge(u.ID(), v.ID()) != nil {
			t.Fatalf("NewEdge returned existing: %#v", e)
		}
		g.SetEdge(e)
		if g.Edge(u.ID(), v.ID()) == nil {
			t.Fatalf("SetEdge failed to add edge: %#v", e)
		}
		if g.Node(u.ID()) == nil {
			t.Fatalf("SetEdge failed to add from node: %#v", u)
		}
		if g.Node(v.ID()) == nil {
			t.Fatalf("SetEdge failed to add to node: %#v", v)
		}

		if !canSetNode {
			continue
		}

		g.SetEdge(g.NewEdge(altNode{u}, altNode{v}))
		if nu := g.Node(u.ID()); nu == u {
			t.Fatalf("SetEdge failed to update from node: u=%#v nu=%#v", u, nu)
		}
		if nv := g.Node(v.ID()); nv == v {
			t.Fatalf("SetEdge failed to update to node: v=%#v nv=%#v", v, nv)
		}
	}
}

// WeightedEdgeAdder is a graph.EdgeAdder graph.
type WeightedEdgeAdder interface {
	graph.Graph
	graph.WeightedEdgeAdder
}

// AddWeightedEdges tests whether g correctly implements the graph.WeightedEdgeAdder
// interface. AddWeightedEdges creates n pairs of nodes with random IDs in [0,n) and
// joins edges each node in the pair using SetWeightedEdge with weight w.
// AddWeightedEdges confirms that the end point nodes are added to the graph and that
// the edges are stored in the graph. If canLoop is true, self edges may be created.
// If canSet is true, a second call to SetWeightedEdge is made for each edge to
// confirm that the nodes corresponding the end points are updated.
func AddWeightedEdges(t *testing.T, n int, g WeightedEdgeAdder, w float64, newNode func(id int64) graph.Node, canLoop, canSetNode bool) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	type altNode struct {
		graph.Node
	}

	rnd := rand.New(rand.NewSource(1))
	for i := 0; i < n; i++ {
		u := newNode(rnd.Int63n(int64(n)))
		var v graph.Node
		for {
			v = newNode(rnd.Int63n(int64(n)))
			if canLoop || u.ID() != v.ID() {
				break
			}
		}
		e := g.NewWeightedEdge(u, v, w)
		if g.Edge(u.ID(), v.ID()) != nil {
			t.Fatalf("NewEdge returned existing: %#v", e)
		}
		g.SetWeightedEdge(e)
		ne := g.Edge(u.ID(), v.ID())
		if ne == nil {
			t.Fatalf("SetWeightedEdge failed to add edge: %#v", e)
		}
		we, ok := ne.(graph.WeightedEdge)
		if !ok {
			t.Fatalf("SetWeightedEdge failed to add weighted edge: %#v", e)
		}
		if we.Weight() != w {
			t.Fatalf("edge weight mismatch: got:%f want:%f", we.Weight(), w)
		}

		if g.Node(u.ID()) == nil {
			t.Fatalf("SetWeightedEdge failed to add from node: %#v", u)
		}
		if g.Node(v.ID()) == nil {
			t.Fatalf("SetWeightedEdge failed to add to node: %#v", v)
		}

		if !canSetNode {
			continue
		}

		g.SetWeightedEdge(g.NewWeightedEdge(altNode{u}, altNode{v}, w))
		if nu := g.Node(u.ID()); nu == u {
			t.Fatalf("SetWeightedEdge failed to update from node: u=%#v nu=%#v", u, nu)
		}
		if nv := g.Node(v.ID()); nv == v {
			t.Fatalf("SetWeightedEdge failed to update to node: v=%#v nv=%#v", v, nv)
		}
	}
}

// NoLoopAddEdges tests whether g panics for self-loop addition. NoLoopAddEdges
// adds n nodes with IDs in [0,n) and creates an edge from the graph with NewEdge.
// NoLoopAddEdges confirms that this does not panic and then adds the edge to the
// graph to ensure that SetEdge will panic when adding a self-loop.
func NoLoopAddEdges(t *testing.T, n int, g EdgeAdder, newNode func(id int64) graph.Node) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	for id := 0; id < n; id++ {
		node := newNode(int64(id))
		e := g.NewEdge(node, node)
		panicked := panics(func() {
			g.SetEdge(e)
		})
		if !panicked {
			t.Errorf("expected panic for self-edge: %#v", e)
		}
	}
}

// NoLoopAddWeightedEdges tests whether g panics for self-loop addition. NoLoopAddWeightedEdges
// adds n nodes with IDs in [0,n) and creates an edge from the graph with NewWeightedEdge.
// NoLoopAddWeightedEdges confirms that this does not panic and then adds the edge to the
// graph to ensure that SetWeightedEdge will panic when adding a self-loop.
func NoLoopAddWeightedEdges(t *testing.T, n int, g WeightedEdgeAdder, w float64, newNode func(id int64) graph.Node) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	for id := 0; id < n; id++ {
		node := newNode(int64(id))
		e := g.NewWeightedEdge(node, node, w)
		panicked := panics(func() {
			g.SetWeightedEdge(e)
		})
		if !panicked {
			t.Errorf("expected panic for self-edge: %#v", e)
		}
	}
}

// LineAdder is a graph.LineAdder multigraph.
type LineAdder interface {
	graph.Multigraph
	graph.LineAdder
}

// AddLines tests whether g correctly implements the graph.LineAdder interface.
// AddLines creates n pairs of nodes with random IDs in [0,n) and joins edges
// each node in the pair using SetLine. AddLines confirms that the end point
// nodes are added to the graph and that the edges are stored in the graph.
// If canSet is true, a second call to SetLine is made for each edge to confirm
// that the nodes corresponding the end points are updated.
func AddLines(t *testing.T, n int, g LineAdder, newNode func(id int64) graph.Node, canSetNode bool) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	type altNode struct {
		graph.Node
	}

	rnd := rand.New(rand.NewSource(1))
	seen := make(tripleInt64s)
	for i := 0; i < n; i++ {
		u := newNode(rnd.Int63n(int64(n)))
		v := newNode(rnd.Int63n(int64(n)))
		prev := g.Lines(u.ID(), v.ID())
		l := g.NewLine(u, v)
		if seen.has(u.ID(), v.ID(), l.ID()) {
			t.Fatalf("NewLine returned an existing line: %#v", l)
		}
		if g.Lines(u.ID(), v.ID()).Len() != prev.Len() {
			t.Fatalf("NewLine added a line: %#v", l)
		}
		g.SetLine(l)
		seen.add(u.ID(), v.ID(), l.ID())
		if g.Lines(u.ID(), v.ID()).Len() != prev.Len()+1 {
			t.Fatalf("SetLine failed to add line: %#v", l)
		}
		if g.Node(u.ID()) == nil {
			t.Fatalf("SetLine failed to add from node: %#v", u)
		}
		if g.Node(v.ID()) == nil {
			t.Fatalf("SetLine failed to add to node: %#v", v)
		}

		if !canSetNode {
			continue
		}

		g.SetLine(g.NewLine(altNode{u}, altNode{v}))
		if nu := g.Node(u.ID()); nu == u {
			t.Fatalf("SetLine failed to update from node: u=%#v nu=%#v", u, nu)
		}
		if nv := g.Node(v.ID()); nv == v {
			t.Fatalf("SetLine failed to update to node: v=%#v nv=%#v", v, nv)
		}
	}
}

// WeightedLineAdder is a graph.WeightedLineAdder multigraph.
type WeightedLineAdder interface {
	graph.Multigraph
	graph.WeightedLineAdder
}

// AddWeightedLines tests whether g correctly implements the graph.WeightedEdgeAdder
// interface. AddWeightedLines creates n pairs of nodes with random IDs in [0,n) and
// joins edges each node in the pair using SetWeightedLine with weight w.
// AddWeightedLines confirms that the end point nodes are added to the graph and that
// the edges are stored in the graph. If canSet is true, a second call to SetWeightedLine
// is made for each edge to confirm that the nodes corresponding the end points are
// updated.
func AddWeightedLines(t *testing.T, n int, g WeightedLineAdder, w float64, newNode func(id int64) graph.Node, canSetNode bool) {
	defer func() {
		r := recover()
		if r != nil {
			t.Errorf("unexpected panic: %v", r)
		}
	}()

	type altNode struct {
		graph.Node
	}

	rnd := rand.New(rand.NewSource(1))
	seen := make(tripleInt64s)
	for i := 0; i < n; i++ {
		u := newNode(rnd.Int63n(int64(n)))
		v := newNode(rnd.Int63n(int64(n)))
		prev := g.Lines(u.ID(), v.ID())
		l := g.NewWeightedLine(u, v, w)
		if seen.has(u.ID(), v.ID(), l.ID()) {
			t.Fatalf("NewWeightedLine returned an existing line: %#v", l)
		}
		if g.Lines(u.ID(), v.ID()).Len() != prev.Len() {
			t.Fatalf("NewWeightedLine added a line: %#v", l)
		}
		g.SetWeightedLine(l)
		seen.add(u.ID(), v.ID(), l.ID())
		curr := g.Lines(u.ID(), v.ID())
		if curr.Len() != prev.Len()+1 {
			t.Fatalf("SetWeightedLine failed to add line: %#v", l)
		}
		var found bool
		for curr.Next() {
			if curr.Line().ID() == l.ID() {
				found = true
				wl, ok := curr.Line().(graph.WeightedLine)
				if !ok {
					t.Fatalf("SetWeightedLine failed to add weighted line: %#v", l)
				}
				if wl.Weight() != w {
					t.Fatalf("line weight mismatch: got:%f want:%f", wl.Weight(), w)
				}
				break
			}
		}
		if !found {
			t.Fatalf("SetWeightedLine failed to add line: %#v", l)
		}
		if g.Node(u.ID()) == nil {
			t.Fatalf("SetWeightedLine failed to add from node: %#v", u)
		}
		if g.Node(v.ID()) == nil {
			t.Fatalf("SetWeightedLine failed to add to node: %#v", v)
		}

		if !canSetNode {
			continue
		}

		g.SetWeightedLine(g.NewWeightedLine(altNode{u}, altNode{v}, w))
		if nu := g.Node(u.ID()); nu == u {
			t.Fatalf("SetWeightedLine failed to update from node: u=%#v nu=%#v", u, nu)
		}
		if nv := g.Node(v.ID()); nv == v {
			t.Fatalf("SetWeightedLine failed to update to node: v=%#v nv=%#v", v, nv)
		}
	}
}

// EdgeRemover is a graph.EdgeRemover graph.
type EdgeRemover interface {
	graph.Graph
	graph.EdgeRemover
}

// RemoveEdges tests whether g correctly implements the graph.EdgeRemover interface.
// The input graph g must contain a set of nodes with some edges between them.
// RemoveEdges iterates over remove, which must contain edges in g, removing each
// edge. RemoveEdges confirms that the edge is removed, leaving its end-point nodes
// and all other edges in the graph.
func RemoveEdges(t *testing.T, g EdgeRemover, remove graph.Edges) {
	edges := make(map[edge]struct{})
	nodes := g.Nodes()
	for nodes.Next() {
		u := nodes.Node()
		uid := u.ID()
		to := g.From(uid)
		for to.Next() {
			v := to.Node()
			edges[edge{f: u.ID(), t: v.ID()}] = struct{}{}
		}
	}

	for remove.Next() {
		e := remove.Edge()
		if g.Edge(e.From().ID(), e.To().ID()) == nil {
			t.Fatalf("bad tests: missing edge: %#v", e)
		}
		if g.Node(e.From().ID()) == nil {
			t.Fatalf("bad tests: missing from node: %#v", e.From())
		}
		if g.Node(e.To().ID()) == nil {
			t.Fatalf("bad tests: missing to node: %#v", e.To())
		}

		g.RemoveEdge(e.From().ID(), e.To().ID())

		if _, ok := g.(graph.Undirected); ok {
			delete(edges, edge{f: e.To().ID(), t: e.From().ID()})
		}
		delete(edges, edge{f: e.From().ID(), t: e.To().ID()})
		for ge := range edges {
			if g.Edge(ge.f, ge.t) == nil {
				t.Fatalf("unexpected missing edge after removing edge %#v: %#v", e, ge)
			}
		}

		if ne := g.Edge(e.From().ID(), e.To().ID()); ne != nil {
			t.Fatalf("expected nil edge: got:%#v", ne)
		}
		if g.Node(e.From().ID()) == nil {
			t.Fatalf("unexpected deletion of from node: %#v", e.From())
		}
		if g.Node(e.To().ID()) == nil {
			t.Fatalf("unexpected deletion  to node: %#v", e.To())
		}
	}
}

// LineRemover is a graph.EdgeRemove graph.
type LineRemover interface {
	graph.Multigraph
	graph.LineRemover
}

// RemoveLines tests whether g correctly implements the graph.LineRemover interface.
// The input graph g must contain a set of nodes with some lines between them.
// RemoveLines iterates over remove, which must contain lines in g, removing each
// line. RemoveLines confirms that the line is removed, leaving its end-point nodes
// and all other lines in the graph.
func RemoveLines(t *testing.T, g LineRemover, remove graph.Lines) {
	// lines is the set of lines in the graph.
	// The presence of a key indicates that the
	// line should exist in the graph. The value
	// for each key is used to indicate whether
	// it has been found during testing.
	lines := make(map[edge]bool)
	nodes := g.Nodes()
	for nodes.Next() {
		u := nodes.Node()
		uid := u.ID()
		to := g.From(uid)
		for to.Next() {
			v := to.Node()
			lit := g.Lines(u.ID(), v.ID())
			for lit.Next() {
				lines[edge{f: u.ID(), t: v.ID(), id: lit.Line().ID()}] = true
			}
		}
	}

	for remove.Next() {
		l := remove.Line()
		if g.Lines(l.From().ID(), l.To().ID()) == graph.Empty {
			t.Fatalf("bad tests: missing line: %#v", l)
		}
		if g.Node(l.From().ID()) == nil {
			t.Fatalf("bad tests: missing from node: %#v", l.From())
		}
		if g.Node(l.To().ID()) == nil {
			t.Fatalf("bad tests: missing to node: %#v", l.To())
		}

		prev := g.Lines(l.From().ID(), l.To().ID())

		g.RemoveLine(l.From().ID(), l.To().ID(), l.ID())

		if _, ok := g.(graph.Undirected); ok {
			delete(lines, edge{f: l.To().ID(), t: l.From().ID(), id: l.ID()})
		}
		delete(lines, edge{f: l.From().ID(), t: l.To().ID(), id: l.ID()})

		// Mark all lines as not found.
		for gl := range lines {
			lines[gl] = false
		}

		// Mark found lines. This could be done far more efficiently.
		for gl := range lines {
			lit := g.Lines(gl.f, gl.t)
			for lit.Next() {
				lid := lit.Line().ID()
				if lid == gl.id {
					lines[gl] = true
					break
				}
			}
		}
		for gl, found := range lines {
			if !found {
				t.Fatalf("unexpected missing line after removing line %#v: %#v", l, gl)
			}
		}

		if curr := g.Lines(l.From().ID(), l.To().ID()); curr.Len() != prev.Len()-1 {
			t.Fatalf("RemoveLine failed to mutate graph: curr edge size != prev edge size-1, %d != %d", curr.Len(), prev.Len()-1)
		}
		if g.Node(l.From().ID()) == nil {
			t.Fatalf("unexpected deletion of from node: %#v", l.From())
		}
		if g.Node(l.To().ID()) == nil {
			t.Fatalf("unexpected deletion  to node: %#v", l.To())
		}
	}
}

// undirectedIDs returns a numerical sort ordered canonicalisation of the
// IDs of e.
func undirectedIDs(e Edge) (lo, hi int64, inverted bool) {
	lid := e.From().ID()
	hid := e.To().ID()
	if hid < lid {
		inverted = true
		hid, lid = lid, hid
	}
	return lid, hid, inverted
}

type edge struct {
	f, t, id int64
}

func panics(fn func()) (ok bool) {
	defer func() {
		ok = recover() != nil
	}()
	fn()
	return
}

// RandomNodes implements the graph.Nodes interface for a set of random nodes.
type RandomNodes struct {
	n       int
	seed    uint64
	newNode func(int64) graph.Node

	curr int64

	state *rand.Rand
	seen  set.Ints[int64]
	count int
}

var _ graph.Nodes = (*RandomNodes)(nil)

// NewRandomNodes returns a new implicit node iterator containing a set of n nodes
// with IDs generated from a PRNG seeded by the given seed.
// The provided new func maps the id to a graph.Node.
func NewRandomNodes(n int, seed uint64, new func(id int64) graph.Node) *RandomNodes {
	return &RandomNodes{
		n:       n,
		seed:    seed,
		newNode: new,

		state: rand.New(rand.NewSource(seed)),
		seen:  make(set.Ints[int64]),
		count: 0,
	}
}

// Len returns the remaining number of nodes to be iterated over.
func (n *RandomNodes) Len() int {
	return n.n - n.count
}

// Next returns whether the next call of Node will return a valid node.
func (n *RandomNodes) Next() bool {
	if n.count >= n.n {
		return false
	}
	n.count++
	for {
		sign := int64(1)
		if n.state.Float64() < 0.5 {
			sign *= -1
		}
		n.curr = sign * n.state.Int63()
		if !n.seen.Has(n.curr) {
			n.seen.Add(n.curr)
			return true
		}
	}
}

// Node returns the current node of the iterator. Next must have been
// called prior to a call to Node.
func (n *RandomNodes) Node() graph.Node {
	if n.Len() == -1 || n.count == 0 {
		return nil
	}
	return n.newNode(n.curr)
}

// Reset returns the iterator to its initial state.
func (n *RandomNodes) Reset() {
	n.state = rand.New(rand.NewSource(n.seed))
	n.seen = make(set.Ints[int64])
	n.count = 0
}

// tripleInt64s is a set of [3]int64 identifiers.
type tripleInt64s map[[3]int64]struct{}

// add inserts an element into the set.
func (s tripleInt64s) add(x, y, z int64) {
	s[[3]int64{x, y, z}] = struct{}{}
}

// has reports the existence of the element in the set.
func (s tripleInt64s) has(x, y, z int64) bool {
	_, ok := s[[3]int64{x, y, z}]
	return ok
}