1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
// Undirect converts a directed graph to an undirected graph.
type Undirect struct {
G Directed
}
var _ Undirected = Undirect{}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g Undirect) Node(id int64) Node { return g.G.Node(id) }
// Nodes returns all the nodes in the graph.
func (g Undirect) Nodes() Nodes { return g.G.Nodes() }
// From returns all nodes in g that can be reached directly from u.
func (g Undirect) From(uid int64) Nodes {
if g.G.Node(uid) == nil {
return Empty
}
return newNodeIteratorPair(g.G.From(uid), g.G.To(uid))
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g Undirect) HasEdgeBetween(xid, yid int64) bool { return g.G.HasEdgeBetween(xid, yid) }
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// If an edge exists, the Edge returned is an EdgePair. The weight of
// the edge is determined by applying the Merge func to the weights of the
// edges between u and v.
func (g Undirect) Edge(uid, vid int64) Edge { return g.EdgeBetween(uid, vid) }
// EdgeBetween returns the edge between nodes x and y. If an edge exists, the
// Edge returned is an EdgePair. The weight of the edge is determined by
// applying the Merge func to the weights of edges between x and y.
func (g Undirect) EdgeBetween(xid, yid int64) Edge {
fe := g.G.Edge(xid, yid)
re := g.G.Edge(yid, xid)
if fe == nil && re == nil {
return nil
}
return EdgePair{fe, re}
}
// UndirectWeighted converts a directed weighted graph to an undirected weighted graph,
// resolving edge weight conflicts.
type UndirectWeighted struct {
G WeightedDirected
// Absent is the value used to
// represent absent edge weights
// passed to Merge if the reverse
// edge is present.
Absent float64
// Merge defines how discordant edge
// weights in G are resolved. A merge
// is performed if at least one edge
// exists between the nodes being
// considered. The edges corresponding
// to the two weights are also passed,
// in the same order.
// The order of weight parameters
// passed to Merge is not defined, so
// the function should be commutative.
// If Merge is nil, the arithmetic
// mean is used to merge weights.
Merge func(x, y float64, xe, ye Edge) float64
}
var (
_ Undirected = UndirectWeighted{}
_ WeightedUndirected = UndirectWeighted{}
)
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g UndirectWeighted) Node(id int64) Node { return g.G.Node(id) }
// Nodes returns all the nodes in the graph.
func (g UndirectWeighted) Nodes() Nodes { return g.G.Nodes() }
// From returns all nodes in g that can be reached directly from u.
func (g UndirectWeighted) From(uid int64) Nodes {
if g.G.Node(uid) == nil {
return Empty
}
return newNodeIteratorPair(g.G.From(uid), g.G.To(uid))
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g UndirectWeighted) HasEdgeBetween(xid, yid int64) bool { return g.G.HasEdgeBetween(xid, yid) }
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// If an edge exists, the Edge returned is an EdgePair. The weight of
// the edge is determined by applying the Merge func to the weights of the
// edges between u and v.
func (g UndirectWeighted) Edge(uid, vid int64) Edge { return g.WeightedEdgeBetween(uid, vid) }
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// If an edge exists, the Edge returned is an EdgePair. The weight of
// the edge is determined by applying the Merge func to the weights of the
// edges between u and v.
func (g UndirectWeighted) WeightedEdge(uid, vid int64) WeightedEdge {
return g.WeightedEdgeBetween(uid, vid)
}
// EdgeBetween returns the edge between nodes x and y. If an edge exists, the
// Edge returned is an EdgePair. The weight of the edge is determined by
// applying the Merge func to the weights of edges between x and y.
func (g UndirectWeighted) EdgeBetween(xid, yid int64) Edge {
return g.WeightedEdgeBetween(xid, yid)
}
// WeightedEdgeBetween returns the weighted edge between nodes x and y. If an edge exists, the
// Edge returned is an EdgePair. The weight of the edge is determined by
// applying the Merge func to the weights of edges between x and y.
func (g UndirectWeighted) WeightedEdgeBetween(xid, yid int64) WeightedEdge {
fe := g.G.Edge(xid, yid)
re := g.G.Edge(yid, xid)
if fe == nil && re == nil {
return nil
}
f, ok := g.G.Weight(xid, yid)
if !ok {
f = g.Absent
}
r, ok := g.G.Weight(yid, xid)
if !ok {
r = g.Absent
}
var w float64
if g.Merge == nil {
w = (f + r) / 2
} else {
w = g.Merge(f, r, fe, re)
}
return WeightedEdgePair{EdgePair: [2]Edge{fe, re}, W: w}
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node the internal node weight is returned. If there is no joining
// edge between the two nodes the weight value returned is zero. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g UndirectWeighted) Weight(xid, yid int64) (w float64, ok bool) {
fe := g.G.Edge(xid, yid)
re := g.G.Edge(yid, xid)
f, fOk := g.G.Weight(xid, yid)
if !fOk {
f = g.Absent
}
r, rOK := g.G.Weight(yid, xid)
if !rOK {
r = g.Absent
}
ok = fOk || rOK
if g.Merge == nil {
return (f + r) / 2, ok
}
return g.Merge(f, r, fe, re), ok
}
// EdgePair is an opposed pair of directed edges.
type EdgePair [2]Edge
// From returns the from node of the first non-nil edge, or nil.
func (e EdgePair) From() Node {
if e[0] != nil {
return e[0].From()
} else if e[1] != nil {
return e[1].From()
}
return nil
}
// To returns the to node of the first non-nil edge, or nil.
func (e EdgePair) To() Node {
if e[0] != nil {
return e[0].To()
} else if e[1] != nil {
return e[1].To()
}
return nil
}
// ReversedEdge returns a new Edge with the end point of the
// edges in the pair swapped.
func (e EdgePair) ReversedEdge() Edge {
if e[0] != nil {
e[0] = e[0].ReversedEdge()
}
if e[1] != nil {
e[1] = e[1].ReversedEdge()
}
return e
}
// WeightedEdgePair is an opposed pair of directed edges.
type WeightedEdgePair struct {
EdgePair
W float64
}
// ReversedEdge returns a new Edge with the end point of the
// edges in the pair swapped.
func (e WeightedEdgePair) ReversedEdge() Edge {
e.EdgePair = e.EdgePair.ReversedEdge().(EdgePair)
return e
}
// Weight returns the merged edge weights of the two edges.
func (e WeightedEdgePair) Weight() float64 { return e.W }
// nodeIteratorPair combines two Nodes to produce a single stream of
// unique nodes.
type nodeIteratorPair struct {
a, b Nodes
curr Node
idx, cnt int
// unique indicates the node in b with the key ID is unique.
unique map[int64]bool
}
func newNodeIteratorPair(a, b Nodes) *nodeIteratorPair {
n := nodeIteratorPair{a: a, b: b, unique: make(map[int64]bool)}
for n.b.Next() {
n.unique[n.b.Node().ID()] = true
n.cnt++
}
n.b.Reset()
for n.a.Next() {
if _, ok := n.unique[n.a.Node().ID()]; !ok {
n.cnt++
}
n.unique[n.a.Node().ID()] = false
}
n.a.Reset()
return &n
}
func (n *nodeIteratorPair) Len() int {
return n.cnt - n.idx
}
func (n *nodeIteratorPair) Next() bool {
if n.a.Next() {
n.idx++
n.curr = n.a.Node()
return true
}
for n.b.Next() {
if n.unique[n.b.Node().ID()] {
n.idx++
n.curr = n.b.Node()
return true
}
}
n.curr = nil
return false
}
func (n *nodeIteratorPair) Node() Node {
return n.curr
}
func (n *nodeIteratorPair) Reset() {
n.idx = 0
n.curr = nil
n.a.Reset()
n.b.Reset()
}
|