1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package quad
import (
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mathext"
)
// Hermite generates sample locations and weights for performing quadrature with
// a squared-exponential weight
//
// int_-inf^inf e^(-x^2) f(x) dx .
type Hermite struct{}
func (h Hermite) FixedLocations(x, weight []float64, min, max float64) {
// TODO(btracey): Implement the case where x > 20, x < 200 so that we don't
// need to store all of that data.
// Algorithm adapted from Chebfun http://www.chebfun.org/.
//
// References:
// Algorithm:
// G. H. Golub and J. A. Welsch, "Calculation of Gauss quadrature rules",
// Math. Comp. 23:221-230, 1969.
// A. Glaser, X. Liu and V. Rokhlin, "A fast algorithm for the
// calculation of the roots of special functions", SIAM Journal
// on Scientific Computing", 29(4):1420-1438:, 2007.
// A. Townsend, T. Trogdon, and S.Olver, Fast computation of Gauss quadrature
// nodes and weights on the whole real line, IMA J. Numer. Anal., 36: 337–358,
// 2016. http://arxiv.org/abs/1410.5286
if len(x) != len(weight) {
panic("hermite: slice length mismatch")
}
if min >= max {
panic("hermite: min >= max")
}
if !math.IsInf(min, -1) || !math.IsInf(max, 1) {
panic("hermite: non-infinite bound")
}
h.locations(x, weight)
}
func (h Hermite) locations(x, weights []float64) {
n := len(x)
switch {
case 0 < n && n <= 200:
copy(x, xCacheHermite[n-1])
copy(weights, wCacheHermite[n-1])
case n > 200:
h.locationsAsy(x, weights)
}
}
// Algorithm adapted from Chebfun http://www.chebfun.org/. Specific code
// https://github.com/chebfun/chebfun/blob/development/hermpts.m.
// Original Copyright Notice:
/*
Copyright (c) 2015, The Chancellor, Masters and Scholars of the University
of Oxford, and the Chebfun Developers. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of Oxford nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// locationsAsy returns the node locations and weights of a Hermite quadrature rule
// with len(x) points.
func (h Hermite) locationsAsy(x, w []float64) {
// A. Townsend, T. Trogdon, and S.Olver, Fast computation of Gauss quadrature
// nodes and weights the whole real line, IMA J. Numer. Anal.,
// 36: 337–358, 2016. http://arxiv.org/abs/1410.5286
// Find the positive locations and weights.
n := len(x)
l := n / 2
xa := x[l:]
wa := w[l:]
for i := range xa {
xa[i], wa[i] = h.locationsAsy0(i, n)
}
// Flip around zero -- copy the negative x locations with the corresponding
// weights.
if n%2 == 0 {
l--
}
for i, v := range xa {
x[l-i] = -v
}
for i, v := range wa {
w[l-i] = v
}
sumW := floats.Sum(w)
c := math.SqrtPi / sumW
floats.Scale(c, w)
}
// locationsAsy0 returns the location and weight for location i in an n-point
// quadrature rule. The rule is symmetric, so i should be <= n/2 + n%2.
func (h Hermite) locationsAsy0(i, n int) (x, w float64) {
const convTol = 1e-16
const convIter = 20
theta0 := h.hermiteInitialGuess(i, n)
t0 := theta0 / math.Sqrt(2*float64(n)+1)
theta0 = math.Acos(t0)
sqrt2np1 := math.Sqrt(2*float64(n) + 1)
var vali, dvali float64
for k := 0; k < convIter; k++ {
vali, dvali = h.hermpolyAsyAiry(i, n, theta0)
dt := -vali / (math.Sqrt2 * sqrt2np1 * dvali * math.Sin(theta0))
theta0 -= dt
if math.Abs(theta0) < convTol {
break
}
}
x = sqrt2np1 * math.Cos(theta0)
ders := x*vali + math.Sqrt2*dvali
w = math.Exp(-x*x) / (ders * ders)
return x, w
}
// hermpolyAsyAiry evaluates the Hermite polynomials using the Airy asymptotic
// formula in theta-space.
func (h Hermite) hermpolyAsyAiry(i, n int, t float64) (valVec, dvalVec float64) {
musq := 2*float64(n) + 1
cosT := math.Cos(t)
sinT := math.Sin(t)
sin2T := 2 * cosT * sinT
eta := 0.5*t - 0.25*sin2T
chi := -math.Pow(3*eta/2, 2.0/3)
phi := math.Pow(-chi/(sinT*sinT), 1.0/4)
cnst := 2 * math.SqrtPi * math.Pow(musq, 1.0/6) * phi
airy0 := real(mathext.AiryAi(complex(math.Pow(musq, 2.0/3)*chi, 0)))
airy1 := real(mathext.AiryAiDeriv(complex(math.Pow(musq, 2.0/3)*chi, 0)))
// Terms in 12.10.43:
const (
a1 = 15.0 / 144
b1 = -7.0 / 5 * a1
a2 = 5.0 * 7 * 9 * 11.0 / 2.0 / 144.0 / 144.0
b2 = -13.0 / 11 * a2
a3 = 7.0 * 9 * 11 * 13 * 15 * 17 / 6.0 / 144.0 / 144.0 / 144.0
b3 = -19.0 / 17 * a3
)
// Pre-compute terms.
cos2T := cosT * cosT
cos3T := cos2T * cosT
cos4T := cos3T * cosT
cos5T := cos4T * cosT
cos7T := cos5T * cos2T
cos9T := cos7T * cos2T
chi2 := chi * chi
chi3 := chi2 * chi
chi4 := chi3 * chi
chi5 := chi4 * chi
phi6 := math.Pow(phi, 6)
phi12 := phi6 * phi6
phi18 := phi12 * phi6
// u polynomials in 12.10.9.
u1 := (cos3T - 6*cosT) / 24.0
u2 := (-9*cos4T + 249*cos2T + 145) / 1152.0
u3 := (-4042*cos9T + 18189*cos7T - 28287*cos5T - 151995*cos3T - 259290*cosT) / 414720.0
val := airy0
B0 := -(phi6*u1 + a1) / chi2
val += B0 * airy1 / math.Pow(musq, 4.0/3)
A1 := (phi12*u2 + b1*phi6*u1 + b2) / chi3
val += A1 * airy0 / (musq * musq)
B1 := -(phi18*u3 + a1*phi12*u2 + a2*phi6*u1 + a3) / chi5
val += B1 * airy1 / math.Pow(musq, 4.0/3+2)
val *= cnst
// Derivative.
eta = 0.5*t - 0.25*sin2T
chi = -math.Pow(3*eta/2, 2.0/3)
phi = math.Pow(-chi/(sinT*sinT), 1.0/4)
cnst = math.Sqrt2 * math.SqrtPi * math.Pow(musq, 1.0/3) / phi
// v polynomials in 12.10.10.
v1 := (cos3T + 6*cosT) / 24
v2 := (15*cos4T - 327*cos2T - 143) / 1152
v3 := (259290*cosT + 238425*cos3T - 36387*cos5T + 18189*cos7T - 4042*cos9T) / 414720
C0 := -(phi6*v1 + b1) / chi
dval := C0 * airy0 / math.Pow(musq, 2.0/3)
dval += airy1
C1 := -(phi18*v3 + b1*phi12*v2 + b2*phi6*v1 + b3) / chi4
dval += C1 * airy0 / math.Pow(musq, 2.0/3+2)
D1 := (phi12*v2 + a1*phi6*v1 + a2) / chi3
dval += D1 * airy1 / (musq * musq)
dval *= cnst
return val, dval
}
// hermiteInitialGuess returns the initial guess for node i in an n-point Hermite
// quadrature rule. The rule is symmetric, so i should be <= n/2 + n%2.
func (h Hermite) hermiteInitialGuess(i, n int) float64 {
// There are two different formulas for the initial guesses of the hermite
// quadrature locations. The first uses the Gatteschi formula and is good
// near x = sqrt(n+0.5)
// [1] L. Gatteschi, Asymptotics and bounds for the zeros of Laguerre
// polynomials: a survey, J. Comput. Appl. Math., 144 (2002), pp. 7-27.
// The second is the Tricomi initial guesses, good near x = 0. This is
// equation 2.1 in [1] and is originally from
// [2] F. G. Tricomi, Sugli zeri delle funzioni di cui si conosce una
// rappresentazione asintotica, Ann. Mat. Pura Appl. 26 (1947), pp. 283-300.
// If the number of points is odd, there is a quadrature point at 1, which
// has an initial guess of 0.
if n%2 == 1 {
if i == 0 {
return 0
}
i--
}
m := n / 2
a := -0.5
if n%2 == 1 {
a = 0.5
}
nu := 4*float64(m) + 2*a + 2
// Find the split between Gatteschi guesses and Tricomi guesses.
p := 0.4985 + math.SmallestNonzeroFloat64
pidx := int(math.Floor(p * float64(n)))
// Use the Tricomi initial guesses in the first half where x is nearer to zero.
// Note: zeros of besselj(+/-.5,x) are integer and half-integer multiples of pi.
if i < pidx {
rhs := math.Pi * (4*float64(m) - 4*(float64(i)+1) + 3) / nu
tnk := math.Pi / 2
for k := 0; k < 7; k++ {
val := tnk - math.Sin(tnk) - rhs
dval := 1 - math.Cos(tnk)
dTnk := val / dval
tnk -= dTnk
if math.Abs(dTnk) < 1e-14 {
break
}
}
vc := math.Cos(tnk / 2)
t := vc * vc
return math.Sqrt(nu*t - (5.0/(4.0*(1-t)*(1-t))-1.0/(1-t)-1+3*a*a)/3/nu)
}
// Use Gatteschi guesses in the second half where x is nearer to sqrt(n+0.5)
i = m - (i + 1)
var ar float64
if i < len(airyRtsExact) {
ar = airyRtsExact[i]
} else {
t := 3.0 / 8 * math.Pi * (4*(float64(i)+1) - 1)
ar = math.Pow(t, 2.0/3) * (1 +
5.0/48*math.Pow(t, -2) -
5.0/36*math.Pow(t, -4) +
77125.0/82944*math.Pow(t, -6) -
108056875.0/6967296*math.Pow(t, -8) +
162375596875.0/334430208*math.Pow(t, -10))
}
r := nu + math.Pow(2, 2.0/3)*ar*math.Pow(nu, 1.0/3) +
0.2*math.Pow(2, 4.0/3)*ar*ar*math.Pow(nu, -1.0/3) +
(11.0/35-a*a-12.0/175*ar*ar*ar)/nu +
(16.0/1575*ar+92.0/7875*math.Pow(ar, 4))*math.Pow(2, 2.0/3)*math.Pow(nu, -5.0/3) -
(15152.0/3031875*math.Pow(ar, 5)+1088.0/121275*ar*ar)*math.Pow(2, 1.0/3)*math.Pow(nu, -7.0/3)
if r < 0 {
ar = 0
} else {
ar = math.Sqrt(r)
}
return ar
}
// airyRtsExact are the first airy roots.
var airyRtsExact = []float64{
-2.338107410459762,
-4.087949444130970,
-5.520559828095555,
-6.786708090071765,
-7.944133587120863,
-9.022650853340979,
-10.040174341558084,
-11.008524303733260,
-11.936015563236262,
-12.828776752865757,
}
|