1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
% Copyright (c) 2015, The Chancellor, Masters and Scholars of the University
% of Oxford, and the Chebfun Developers.
% Copyright (c) 2016 The Gonum Authors
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of the University of Oxford nor the names of its
% contributors may be used to endorse or promote products derived from
% this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
% ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
function [x, w, v] = hermpts(n, varargin)
%HERMPTS Hermite points and Gauss-Hermite Quadrature Weights.
% HERMPTS(N) returns N Hermite points X in (-inf, inf). By default these are
% roots of the 'physicist'-type Hermite polynomials, which are orthogonal with
% respect to the weight exp(-x.^2).
%
% HERMPTS(N, 'PROB') normalises instead by the probablist's definition (with
% weight exp(-x.^2/2)), which gives rise to monomials.
%
% [X, W] = HERMPTS(N) returns also a row vector W of weights for Gauss-Hermite
% quadrature. [X,W,V] = HERMPTS(N) returns in addition a column vector V of
% the barycentric weights corresponding to X.
%
% [X, W] = HERMPTS(N, METHOD) where METHOD is one of 'GW', 'REC', 'GLR', or
% 'ASY' allows the user to select which method is used. 'GW' will use the
% traditional Golub-Welsch eigenvalue method [1], best when n<=20. 'REC'
% uses Newton's method with polynomial evaluation via the 3-term
% recurrence for Hermite polynomials. 'GLR' uses Glaser-Liu-Rokhlin
% fast algorithm which is much faster for large N [2]. 'ASY' uses Newton's
% method with polynomial evaluation via asymptotic formula. 'ASY' is the
% fastest for N>=200, 'GLR' is the most accurate for nodes close to 0.
% By default HERMPTS uses 'GW' when N <= 20, 'REC' for 21<=N<200, and
% 'ASY' when N>=200.
%
% References:
% [1] G. H. Golub and J. A. Welsch, "Calculation of Gauss quadrature
% rules", Math. Comp. 23:221-230, 1969,
% [2] A. Glaser, X. Liu and V. Rokhlin, "A fast algorithm for the
% calculation of the roots of special functions", SIAM Journal
% on Scientific Computing", 29(4):1420-1438:, 2007.
% [3] A. Townsend, T. Trogdon and S. Olver, Fast computation of Gauss
% nodes and weights on the whole real line, submitted, 2014.
%
% See also CHEBPTS, LEGPTS, LAGPTS, and JACPTS.
% Copyright 2015 by The University of Oxford and The Chebfun Developers.
% See http://www.chebfun.org/ for Chebfun information.
%
% 'GW' by Nick Trefethen, March 2009 - algorithm adapted from [1].
% 'GLR' by Nick Hale, March 2010 - algorithm adapted from [2].
% Defaults:
method = 'default';
type = 'phys';
if ( n < 0 )
error('CHEBFUN:hermpts:n', 'First input should be a positive integer.');
end
% Return empty vector if n = 0.
if ( n == 0 )
[x, w, v] = deal([]);
return
end
% Check the inputs
while ( ~isempty(varargin) )
s = varargin{1};
varargin(1) = [];
if ( strcmpi(s, 'GW') )
method = 'GW';
elseif ( strcmpi(s,'glr') )
method = 'GLR';
elseif ( strcmpi(s,'rec') )
method = 'REC';
elseif ( strcmpi(s,'asy') )
method = 'ASY';
elseif ( strncmpi(s, 'phys', 3) )
type = 'phys';
elseif ( strncmpi(s, 'prob', 3) )
type = 'prob';
else
error('CHEBFUN:hermpts:input', 'Unrecognised input string; %s.', s);
end
end
% Three cases:
%
% N <= 20: Use GW
% 21<=N<200: Use REC
% N>=200: Use ASY
if ( n == 1 )
% n = 1 case is trivial
x = 0;
w = sqrt(pi);
v = 1;
elseif ( (n < 21 && strcmpi(method,'default')) || strcmpi(method,'GW') )
% GW, see [1]
beta = sqrt(.5*(1:n-1)); % 3-term recurrence coeffs
T = diag(beta, 1) + diag(beta, -1); % Jacobi matrix
[V, D] = eig(T); % Eigenvalue decomposition
[x, indx] = sort(diag(D)); % Hermite points
w = sqrt(pi)*V(1, indx).^2; % weights
v = abs(V(1, indx)).'; % Barycentric weights
v = v./max(v); % Normalize
v(2:2:n) = -v(2:2:n);
% Enforce symmetry:
ii = 1:floor(n/2);
x = x(ii);
w = w(ii);
vmid = v(floor(n/2)+1);
v = v(ii);
if ( mod(n, 2) )
x = [x ; 0 ; -x(end:-1:1)];
w = [w, sqrt(pi) - sum(2*w), w(end:-1:1)];
v = [v ; vmid ; v(end:-1:1)];
else
x = [x ; -x(end:-1:1)];
w = [w, w(end:-1:1)];
v = [v ; -v(end:-1:1)];
end
elseif ( strcmpi(method,'GLR') )
% Fast, see [2]
[x, ders] = alg0_Herm(n); % Nodes and H_n'(x)
w = (2*exp(-x.^2)./ders.^2)'; % Quadrature weights
v = exp(-x.^2/2)./ders; % Barycentric weights
v = v./max(abs(v)); % Normalize
if ( ~mod(n, 2) )
ii = (n/2+1):n;
v(ii) = -v(ii);
end
elseif ( (n < 200 && strcmpi(method,'default')) || strcmpi(method,'REC') )
[x, w, v] = hermpts_rec( n );
else
[x, w, v] = hermpts_asy( n );
end
% Normalise so that sum(w) = sqrt(pi)
w = (sqrt(pi)/sum(w))*w;
if ( strcmpi(type, 'prob') )
x = x*sqrt(2);
w = w*sqrt(2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%%%%%%%%%%%%%%%%%%%%%% Routines for GLR algorithm %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Driver for 'GLR'.
function [roots, ders] = alg0_Herm(n)
% Compute coefficients of H_m(0), H_m'(0), m = 0,..,N.
Hm2 = 0;
Hm1 = pi^(-1/4);
Hpm2 = 0;
Hpm1 = 0;
for k = 0:n-1
H = -sqrt(k/(k+1))*Hm2;
Hp = sqrt(2/(k+1))*Hm1-sqrt(k/(k+1))*Hpm2;
Hm2 = Hm1;
Hm1 = H;
Hpm2 = Hpm1;
Hpm1 = Hp;
end
% allocate storage
roots = zeros(n, 1);
ders = zeros(n, 1);
if ( mod(n,2) )
% zero is a root:
roots((n-1)/2) = 0;
ders((n+1)/2) = Hp;
else
% find first root:
[roots(n/2+1), ders(n/2+1)] = alg2_Herm(H,n);
end
% compute roots and derivatives:
[roots, ders] = alg1_Herm(roots, ders);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main algorithm for 'GLR'
function [roots, ders] = alg1_Herm(roots, ders)
n = length(roots);
s = mod(n, 2);
N = (n - s) / 2;
% number of terms in Taylor expansion
m = 30;
% initialise
hh1 = ones(m + 1, 1);
u = zeros(1, m + 1);
up = zeros(1, m + 1);
for j = (N + 1):(n - 1)
% previous root
x = roots(j);
% initial approx
h = rk2_Herm(pi/2,-pi/2,x,n) - x;
% scaling
M = 1/h;
% recurrence relation for Hermite polynomials
c1 = -(2*n+1-x^2)/M^2;
c2 = 2*x./M^3;
c3 = 1./M^4;
u(1) = 0;
u(2) = ders(j)/M;
u(3) = .5*c1*u(1);
u(4) = (c1*u(2) + c2*u(1))/6;
up(1) = u(2);
up(2) = 2*u(3)*M;
up(3) = 3*u(4)*M;
up(m+1) = 0;
for k = 2:m-2
u(k+3) = (c1*u(k+1) + c2*u(k) + c3*u(k-1))/((k+1)*(k+2));
up(k+2) = (k+2)*u(k+3)*M;
end
% flip for more accuracy in inner product calculation
u = u(m+1:-1:1);
up = up(m+1:-1:1);
% Newton iteration
hh = hh1;
hh(end) = M;
step = inf;
l = 0;
z = zeros(m, 1);
while ( (abs(step) > eps) && (l < 10) )
l = l + 1;
step = (u*hh)/(up*hh);
h = h - step;
% powers of h (This is the fastest way!)
hh = [M ; cumprod(M*h + z)];
% flip for more accuracy in inner product calculation
hh = hh(end:-1:1);
end
% update
roots(j+1) = x + h;
ders(j+1) = up*hh;
end
% nodes are symmetric
roots(1:N+s) = -roots(n:-1:N+1);
ders(1:N+s) = ders(n:-1:N+1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% find the first root (note H_n'(0) = 0)
function [x1, d1] = alg2_Herm(Hn0, n)
% advance ODE via Runge-Kutta for initial approx
x1 = rk2_Herm(0, -pi/2, 0, n);
% number of terms in Taylor expansion
m = 30;
% scaling
M = 1/x1;
% c = log10(n);
% M = 1./x1.^(1-1.25/(c));
% initialise
u = zeros(1,m+1);
up = zeros(1,m+1);
% recurrence relation for Legendre polynomials
u(1) = Hn0;
u(3) = -.5*(2*n+1)*u(1)/M^2;
up(1) = 0;
up(2) = 2*u(3)*M;
for k = 2:2:m-2
u(k+3) = (-(2*n+1)*u(k+1)/M^2 + u(k-1)/M^4)/((k+1)*(k+2));
up(k+2) = (k+2)*u(k+3)*M;
end
% flip for more accuracy in inner product calculation
u = u(m+1:-1:1);
up = up(m+1:-1:1);
z = zeros(m, 1);
x1k = [M ; cumprod(M*x1 + z)];
step = inf;
l = 0;
% Newton iteration
while ( (abs(step) > eps) && (l < 10) )
l = l + 1;
step = (u*x1k)/(up*x1k);
x1 = x1 - step;
% powers of h (This is the fastest way!)
x1k = [1 ; cumprod(M*x1 + z)];
x1k = x1k(end:-1:1);
end
% Update derivative
d1 = up*x1k;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Runge-Kutta for Hermite Equation
function x = rk2_Herm(t, tn, x, n)
m = 10;
h = (tn-t)/m;
for j = 1:m
k1 = -h/(sqrt(2*n+1-x^2) - .5*x*sin(2*t)/(2*n+1-x^2));
t = t + h;
k2 = -h/(sqrt(2*n+1-(x+k1)^2) - .5*x*sin(2*t)/(2*n+1-(x+k1)^2));
x = x + .5*(k1 + k2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%%%%%%%%%%%%%%%%%%%%%% Routines for ASY algorithm %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, w, v] = hermpts_asy(n)
% HERMPTS_ASY, fast algorithm for computing Gauss-Hermite nodes and weights
% using Newton's method with polynomial evaluation via asymptotic expansions.
%
% x = Gauss-Hermite nodes, w = quad weights, v = bary weights.
%
% See [3].
[x, w, v] = hermpts_asy0( n );
if mod(n,2) == 1 % fold out
x = [-x(end:-1:1);x(2:end)];
w = [w(end:-1:1) w(2:end)]; w = (sqrt(pi)/sum(w))*w;
v = [v(end:-1:1);v(2:end)]; v = v./max(abs(v));
else
x = [-x(end:-1:1);x];
w = [w(end:-1:1) w]; w = (sqrt(pi)/sum(w))*w;
v = [v(end:-1:1);-v]; v = v./max(abs(v));
end
% debug
%tic, exact = hermpts(n); toc
%semilogy(abs(exact-x))
end
function [x, w, v] = hermpts_asy0(n)
% Compute Hermite nodes and weights using asymptotic formula
x0 = HermiteInitialGuesses(n); % get initial guesses
t0 = x0./sqrt(2*n+1);
theta0 = acos(t0); % convert to theta-variable
for k = 1:20
[val, dval] = hermpoly_asy_airy(n, theta0);
dt = -val./(sqrt(2)*sqrt(2*n+1)*dval.*sin(theta0));
theta0 = theta0 - dt; % Newton update
if norm(dt,inf) < sqrt(eps)/10, break; end
end
t0 = cos(theta0);
x = sqrt(2*n+1)*t0; % back to x-variable
ders = x.*val + sqrt(2)*dval;
%ders = dval;
w = (exp(-x.^2)./ders.^2)'; % quadrature weights
v = exp(-x.^2/2)./ders; % Barycentric weights
end
function [val, dval] = hermpoly_asy_airy(n, theta)
% HERMPOLY_ASY evaluation hermite poly using Airy asymptotic formula in
% theta-space.
musq = 2*n+1;
cosT = cos(theta); sinT = sin(theta);
sin2T = 2*cosT.*sinT;
eta = .5*theta - .25*sin2T;
chi = -(3*eta/2).^(2/3);
phi = (-chi./sinT.^2).^(1/4);
const = 2*sqrt(pi)*musq^(1/6)*phi;
Airy0 = real(airy(musq.^(2/3)*chi));
Airy1 = real(airy(1,musq.^(2/3)*chi));
% Terms in (12.10.43):
a0 = 1; b0 = 1;
a1 = 15/144; b1 = -7/5*a1;
a2 = 5*7*9*11/2/144^2; b2 = -13/11*a2;
a3 = 7*9*11*13*15*17/6/144^3;
b3 = -19/17*a3;
% u polynomials in (12.10.9)
u0 = 1; u1 = (cosT.^3-6*cosT)/24;
u2 = (-9*cosT.^4 + 249*cosT.^2 + 145)/1152;
u3 = (-4042*cosT.^9+18189*cosT.^7-28287*cosT.^5-151995*cosT.^3-259290*cosT)/414720;
%first term
A0 = 1;
val = A0*Airy0;
%second term
B0 = -(a0*phi.^6.*u1+a1*u0)./chi.^2;
val = val + B0.*Airy1./musq.^(4/3);
%third term
A1 = (b0*phi.^12.*u2 + b1*phi.^6.*u1 + b2*u0)./chi.^3;
val = val + A1.*Airy0/musq.^2;
%fourth term
B1 = -(phi.^18.*u3 + a1*phi.^12.*u2 + a2*phi.^6.*u1 + a3*u0)./chi.^5;
val = val + B1.*Airy1./musq.^(4/3+2);
val = const.*val;
%% Derivative
eta = .5*theta - .25*sin2T;
chi = -(3*eta/2).^(2/3);
phi = (-chi./sinT.^2).^(1/4);
const = sqrt(2*pi)*musq^(1/3)./phi;
% v polynomials in (12.10.10)
v0 = 1; v1 = (cosT.^3+6*cosT)/24;
v2 = (15*cosT.^4-327*cosT.^2-143)/1152;
v3 = (259290*cosT + 238425*cosT.^3 - 36387*cosT.^5 + 18189*cosT.^7 -...
4042*cosT.^9)/414720;
%first term
C0 = -(b0*phi.^6.*v1 + b1.*v0)./chi;
dval = C0.*Airy0/musq.^(2/3);
% %second term
D0 = a0*v0;
dval = dval + D0*Airy1;
% %third term
C1 = -(phi.^18.*v3 + b1*phi.^12.*v2 + b2*phi.^6.*v1 + b3*v0)./chi.^4;
dval = dval + C1.*Airy0/musq.^(2/3+2);
%fourth term
D1 = (a0*phi.^12.*v2 + a1*phi.^6.*v1 + a2*v0)./chi.^3;
dval = dval + D1.*Airy1/musq.^2;
dval = const.*dval;
end
function x_init = HermiteInitialGuesses(n)
%HERMITEINTITIALGUESSES(N), Initial guesses for Hermite zeros.
%
% [1] L. Gatteschi, Asymptotics and bounds for the zeros of Laguerre
% polynomials: a survey, J. Comput. Appl. Math., 144 (2002), pp. 7-27.
%
% [2] F. G. Tricomi, Sugli zeri delle funzioni di cui si conosce una
% rappresentazione asintotica, Ann. Mat. Pura Appl. 26 (1947), pp. 283-300.
% Gatteschi formula involving airy roots [1].
% These initial guess are good near x = sqrt(n+1/2);
if mod(n,2) == 1
m = (n-1)/2; bess = (1:m)'*pi; a = .5;
else
m = n/2; bess = ((0:m-1)'+.5)*pi; a = -.5;
end
nu = 4*m + 2*a + 2;
T = @(t) t.^(2/3).*(1+5/48*t.^(-2)-5/36*t.^(-4)+(77125/82944)*t.^(-6) -...
108056875/6967296*t.^(-8)+162375596875/334430208*t.^(-10));
airyrts = -T(3/8*pi*(4*(1:m)'-1));
airyrts_exact = [ -2.338107410459762 % Exact Airy roots.
-4.087949444130970
-5.520559828095555
-6.786708090071765
-7.944133587120863
-9.022650853340979
-10.040174341558084
-11.008524303733260
-11.936015563236262
-12.828776752865757];
airyrts(1:10) = airyrts_exact; % correct first 10.
x_init = sqrt(nu + 2^(2/3)*airyrts*nu^(1/3) +...
1/5*2^(4/3)*airyrts.^2*nu^(-1/3) +...
(11/35-a^2-12/175*airyrts.^3)/nu +...
(16/1575*airyrts+92/7875*airyrts.^4)*2^(2/3)*nu^(-5/3) -...
(15152/3031875*airyrts.^5+1088/121275*airyrts.^2)*2^(1/3)*nu^(-7/3));
x_init_airy = real(x_init(end:-1:1));
% Tricomi initial guesses. Equation (2.1) in [1]. Originally in [2].
% These initial guesses are good near x = 0 . Note: zeros of besselj(+/-.5,x)
% are integer and half-integer multiples of pi.
% x_init_bess = bess/sqrt(nu).*sqrt((1+ (bess.^2+2*(a^2-1))/3/nu^2) );
Tnk0 = pi/2*ones(m,1);
nu = (4*m+2*a+2);
rhs = (4*m-4*(1:m)'+3)./nu*pi;
for k = 1:7
val = Tnk0 - sin(Tnk0) - rhs;
dval = 1 - cos(Tnk0);
dTnk0 = val./dval;
Tnk0 = Tnk0 - dTnk0;
end
tnk = cos(Tnk0/2).^2;
x_init_sin = sqrt(nu*tnk - (5./(4*(1-tnk).^2) - 1./(1-tnk)-1+3*a^2)/3/nu);
% Patch together
p = 0.4985+eps;
x_init = [x_init_sin(1:floor(p*n));x_init_airy(ceil(p*n):end)];
if mod(n,2) == 1
x_init = [0;x_init];
x_init = x_init(1:m+1);
else
x_init = x_init(1:m);
end
% debug:
%y = hermpts(n);
%semilogy(abs(y - x_init));
%yhalf = -y(m:-1:1);
%semilogy(abs(yhalf - x_init));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%%%%%%%%%%%%%%%%%%%%%% Routines for REC algorithm %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, w, v] = hermpts_rec(n)
% Compute Hermite nodes and weights using recurrence relation.
x0 = HermiteInitialGuesses(n);
x0 = x0.*sqrt(2);
for kk = 1:10
[val, dval] = hermpoly_rec(n, x0);
dx = val./dval;
dx(isnan(dx)) = 0;
x0 = x0 - dx;
if norm(dx, inf)<sqrt(eps), break; end
end
x = x0/sqrt(2);
w = (exp(-x.^2)./dval.^2)'; % quadrature weights
v = exp(-x.^2/2)./dval; % Barycentric weights
if mod(n,2) == 1 % fold out
x = [-x(end:-1:1);x(2:end)];
w = [w(end:-1:1) w(2:end)]; w = (sqrt(pi)/sum(w))*w;
v = [v(end:-1:1);v(2:end)]; v = v./max(abs(v));
else
x = [-x(end:-1:1);x];
w = [w(end:-1:1) w]; w = (sqrt(pi)/sum(w))*w;
v = [v(end:-1:1);-v]; v = v./max(abs(v));
end
end
function [val, dval] = hermpoly_rec(n, x0)
% HERMPOLY_rec evaluation of scaled Hermite poly using recurrence
% evaluate:
Hold = exp(-x0.^2/4); H = x0.*exp(-x0.^2/4);
for k = 1:n-1
Hnew = (x0.*H./sqrt(k+1) - Hold./sqrt(1+1/k));
Hold = H; H = Hnew;
end
% evaluate derivative:
val = Hnew;
dval = (-x0.*Hnew + n^(1/2)*Hold);
end
|