File: quad.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (162 lines) | stat: -rw-r--r-- 4,434 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package quad

import (
	"math"
	"sync"
)

// FixedLocationer computes a set of quadrature locations and weights and stores
// them in-place into x and weight respectively. The number of points generated is equal to
// the len(x). The weights and locations should be chosen such that
//
//	int_min^max f(x) dx ≈ \sum_i w_i f(x_i)
type FixedLocationer interface {
	FixedLocations(x, weight []float64, min, max float64)
}

// FixedLocationSingler wraps the FixedLocationSingle method.
type FixedLocationSingler interface {
	// FixedLocationSingle returns the location and weight for
	// element k in a fixed quadrature rule with n total samples
	// and integral bounds from min to max.
	FixedLocationSingle(n, k int, min, max float64) (x, weight float64)
}

// Fixed approximates the integral of the function f from min to max using a fixed
// n-point quadrature rule. During evaluation, f will be evaluated n times using
// the weights and locations specified by rule. That is, Fixed estimates
//
//	int_min^max f(x) dx ≈ \sum_i w_i f(x_i)
//
// If rule is nil, an acceptable default is chosen, otherwise it is
// assumed that the properties of the integral match the assumptions of rule.
// For example, Legendre assumes that the integration bounds are finite. If
// rule is also a FixedLocationSingler, the quadrature points are computed
// individually rather than as a unit.
//
// If concurrent <= 0, f is evaluated serially, while if concurrent > 0, f
// may be evaluated with at most concurrent simultaneous evaluations.
//
// min must be less than or equal to max, and n must be positive, otherwise
// Fixed will panic.
func Fixed(f func(float64) float64, min, max float64, n int, rule FixedLocationer, concurrent int) float64 {
	// TODO(btracey): When there are Hermite polynomial quadrature, add an additional
	// example to the documentation comment that talks about weight functions.
	if n <= 0 {
		panic("quad: non-positive number of locations")
	}
	if min > max {
		panic("quad: min > max")
	}
	if min == max {
		return 0
	}
	intfunc := f
	// If rule is non-nil it is assumed that the function and the constraints
	// of rule are aligned. If it is nil, wrap the function and do something
	// reasonable.
	// TODO(btracey): Replace wrapping with other quadrature rules when
	// we have rules that support infinite-bound integrals.
	if rule == nil {
		// int_a^b f(x)dx = int_u^-1(a)^u^-1(b) f(u(t))u'(t)dt
		switch {
		case math.IsInf(max, 1) && math.IsInf(min, -1):
			// u(t) = (t/(1-t^2))
			min = -1
			max = 1
			intfunc = func(x float64) float64 {
				v := 1 - x*x
				return f(x/v) * (1 + x*x) / (v * v)
			}
		case math.IsInf(max, 1):
			// u(t) = a + t / (1-t)
			a := min
			min = 0
			max = 1
			intfunc = func(x float64) float64 {
				v := 1 - x
				return f(a+x/v) / (v * v)
			}
		case math.IsInf(min, -1):
			// u(t) = a - (1-t)/t
			a := max
			min = 0
			max = 1
			intfunc = func(x float64) float64 {
				return f(a-(1-x)/x) / (x * x)
			}
		}
		rule = Legendre{}
	}
	singler, isSingler := rule.(FixedLocationSingler)

	var xs, weights []float64
	if !isSingler {
		xs = make([]float64, n)
		weights = make([]float64, n)
		rule.FixedLocations(xs, weights, min, max)
	}

	if concurrent > n {
		concurrent = n
	}

	if concurrent <= 0 {
		var integral float64
		// Evaluate in serial.
		if isSingler {
			for k := 0; k < n; k++ {
				x, weight := singler.FixedLocationSingle(n, k, min, max)
				integral += weight * intfunc(x)
			}
			return integral
		}
		for i, x := range xs {
			integral += weights[i] * intfunc(x)
		}
		return integral
	}

	// Evaluate concurrently
	tasks := make(chan int)

	// Launch distributor
	go func() {
		for i := 0; i < n; i++ {
			tasks <- i
		}
		close(tasks)
	}()

	var mux sync.Mutex
	var integral float64
	var wg sync.WaitGroup
	wg.Add(concurrent)
	for i := 0; i < concurrent; i++ {
		// Launch workers
		go func() {
			defer wg.Done()
			var subIntegral float64
			for k := range tasks {
				var x, weight float64
				if isSingler {
					x, weight = singler.FixedLocationSingle(n, k, min, max)
				} else {
					x = xs[k]
					weight = weights[k]
				}
				f := intfunc(x)
				subIntegral += f * weight
			}
			mux.Lock()
			integral += subIntegral
			mux.Unlock()
		}()
	}
	wg.Wait()
	return integral
}