1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package c64
import (
"gonum.org/v1/gonum/internal/cmplx64"
"gonum.org/v1/gonum/internal/math32"
)
// Add is
//
// for i, v := range s {
// dst[i] += v
// }
func Add(dst, s []complex64) {
for i, v := range s {
dst[i] += v
}
}
// AddConst is
//
// for i := range x {
// x[i] += alpha
// }
func AddConst(alpha complex64, x []complex64) {
for i := range x {
x[i] += alpha
}
}
// CumSum is
//
// if len(s) == 0 {
// return dst
// }
// dst[0] = s[0]
// for i, v := range s[1:] {
// dst[i+1] = dst[i] + v
// }
// return dst
func CumSum(dst, s []complex64) []complex64 {
if len(s) == 0 {
return dst
}
dst[0] = s[0]
for i, v := range s[1:] {
dst[i+1] = dst[i] + v
}
return dst
}
// CumProd is
//
// if len(s) == 0 {
// return dst
// }
// dst[0] = s[0]
// for i, v := range s[1:] {
// dst[i+1] = dst[i] * v
// }
// return dst
func CumProd(dst, s []complex64) []complex64 {
if len(s) == 0 {
return dst
}
dst[0] = s[0]
for i, v := range s[1:] {
dst[i+1] = dst[i] * v
}
return dst
}
// Div is
//
// for i, v := range s {
// dst[i] /= v
// }
func Div(dst, s []complex64) {
for i, v := range s {
dst[i] /= v
}
}
// DivTo is
//
// for i, v := range s {
// dst[i] = v / t[i]
// }
// return dst
func DivTo(dst, s, t []complex64) []complex64 {
for i, v := range s {
dst[i] = v / t[i]
}
return dst
}
// DotUnitary is
//
// for i, v := range x {
// sum += conj(v) * y[i]
// }
// return sum
func DotUnitary(x, y []complex64) (sum complex64) {
for i, v := range x {
sum += cmplx64.Conj(v) * y[i]
}
return sum
}
// L2DistanceUnitary returns the L2-norm of x-y.
func L2DistanceUnitary(x, y []complex64) (norm float32) {
var scale float32
sumSquares := float32(1.0)
for i, v := range x {
v -= y[i]
if v == 0 {
continue
}
absxi := cmplx64.Abs(v)
if math32.IsNaN(absxi) {
return math32.NaN()
}
if scale < absxi {
s := scale / absxi
sumSquares = 1 + sumSquares*s*s
scale = absxi
} else {
s := absxi / scale
sumSquares += s * s
}
}
if math32.IsInf(scale, 1) {
return math32.Inf(1)
}
return scale * math32.Sqrt(sumSquares)
}
// L2NormUnitary returns the L2-norm of x.
func L2NormUnitary(x []complex64) (norm float32) {
var scale float32
sumSquares := float32(1.0)
for _, v := range x {
if v == 0 {
continue
}
absxi := cmplx64.Abs(v)
if math32.IsNaN(absxi) {
return math32.NaN()
}
if scale < absxi {
s := scale / absxi
sumSquares = 1 + sumSquares*s*s
scale = absxi
} else {
s := absxi / scale
sumSquares += s * s
}
}
if math32.IsInf(scale, 1) {
return math32.Inf(1)
}
return scale * math32.Sqrt(sumSquares)
}
// Sum is
//
// var sum complex64
// for i := range x {
// sum += x[i]
// }
func Sum(x []complex64) complex64 {
var sum complex64
for _, v := range x {
sum += v
}
return sum
}
|