1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testrand
import (
"math"
"golang.org/x/exp/rand"
)
// extreme is a pseudo-random number generator that has high probability of returning extreme values.
type extreme struct {
probability float64
nanProbability float64
rnd Rand
}
// newExtreme creates a new extreme pseudo-random generator.
// p is the probability of returning an extreme value.
// nan is the probability of returning a NaN.
func newExtreme(p, nan float64, rnd Rand) *extreme {
return &extreme{p, nan, rnd}
}
// Perm returns a permutation of integers [0, n).
func (e *extreme) Perm(n int) []int { return e.rnd.Perm(n) }
// Read generates len(p) pseudo-random bytes.
func (e *extreme) Read(p []byte) (n int, err error) { return e.rnd.Read(p) }
// Seed reseeds the pseudo-random generator.
func (e *extreme) Seed(seed uint64) { e.rnd.Seed(seed) }
// Shuffle shuffles n items using the swap callback.
func (e *extreme) Shuffle(n int, swap func(i, j int)) { e.rnd.Shuffle(n, swap) }
// p returns true when the generator should output an extreme value.
func (e *extreme) p() bool {
if e.probability <= 0 {
return false
}
return e.rnd.Float64() < e.probability
}
// nan returns true when the generator should output nan.
func (e *extreme) nan() bool {
if e.nanProbability <= 0 {
return false
}
return e.rnd.Float64() < e.nanProbability
}
// ExpFloat64 returns an exponentialy distributed pseudo-random float64 in range (0, math.MaxFloat64].
func (e *extreme) ExpFloat64() float64 {
switch {
case e.p():
return extremeFloat64Exp[e.rnd.Intn(len(extremeFloat64Exp))]
case e.nan():
return math.NaN()
}
return e.rnd.ExpFloat64()
}
// Float32 returns a pseudo-random float32 in range [0.0, 1.0).
func (e *extreme) Float32() float32 {
switch {
case e.p():
return extremeFloat32Unit[e.rnd.Intn(len(extremeFloat32Unit))]
case e.nan():
return float32(math.NaN())
}
return e.rnd.Float32()
}
// Float64 returns a pseudo-random float64 in range [0.0, 1.0).
func (e *extreme) Float64() float64 {
switch {
case e.p():
return extremeFloat64Unit[e.rnd.Intn(len(extremeFloat64Unit))]
case e.nan():
return math.NaN()
}
return e.rnd.Float64()
}
// Int returns a non-negative pseudo-random int.
func (e *extreme) Int() int {
if e.p() {
return extremeInt[e.rnd.Intn(len(extremeInt))]
}
return e.rnd.Int()
}
// Int31 returns a non-negative pseudo-random int32.
func (e *extreme) Int31() int32 {
if e.p() {
return extremeInt31[e.rnd.Intn(len(extremeInt31))]
}
return e.rnd.Int31()
}
// Int31n returns a non-negative pseudo-random int32 from range [0, n).
func (e *extreme) Int31n(n int32) int32 {
if e.p() {
switch rand.Intn(4) {
case 0:
return 0
case 1:
return 1
case 2:
return n / 2
case 3:
return n - 1
}
}
return e.rnd.Int31n(n)
}
// Int63 returns a non-negative pseudo-random int64.
func (e *extreme) Int63() int64 {
if e.p() {
return extremeInt63[e.rnd.Intn(len(extremeInt63))]
}
return e.rnd.Int63()
}
// Int63n returns a non-negative pseudo-random int from range [0, n).
func (e *extreme) Int63n(n int64) int64 {
if e.p() {
switch rand.Intn(4) {
case 0:
return 0
case 1:
return 1
case 2:
return n / 2
case 3:
return n - 1
}
}
return e.rnd.Int63n(n)
}
// Int returns a non-negative pseudo-random int from range [0, n).
func (e *extreme) Intn(n int) int {
if e.p() {
switch rand.Intn(4) {
case 0:
return 0
case 1:
return 1
case 2:
return n / 2
case 3:
return n - 1
}
}
return e.rnd.Intn(n)
}
// NormFloat64 returns a normally distributed pseudo-random float64 in range [-math.MaxFloat64, math.MaxFloat64].
func (e *extreme) NormFloat64() float64 {
switch {
case e.p():
return extremeFloat64Norm[e.rnd.Intn(len(extremeFloat64Norm))]
case e.nan():
return math.NaN()
}
return e.rnd.NormFloat64()
}
// Uint32 returns a pseudo-random uint32.
func (e *extreme) Uint32() uint32 {
if e.p() {
return extremeUint32[e.rnd.Intn(len(extremeUint32))]
}
return e.rnd.Uint32()
}
// Uint64 returns a pseudo-random uint64.
func (e *extreme) Uint64() uint64 {
if e.p() {
return extremeUint64[e.rnd.Intn(len(extremeUint64))]
}
return e.rnd.Uint64()
}
// Uint64n returns a pseudo-random uint64 from range [0, n).
func (e *extreme) Uint64n(n uint64) uint64 {
if e.p() {
switch rand.Intn(4) {
case 0:
return 0
case 1:
return 1
case 2:
return n / 2
case 3:
return n - 1
}
}
return e.rnd.Uint64n(n)
}
|